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ABSTRACT 
 

 Due to the absence of a formal class in VLSI design at ASU East, the need arose 

for a hands-on tutorial that would introduce the students to VLSI design, emphasizing 

System-on-a-Chip design and the concept of design reuse. 

 When UET 513 – Introduction to VLSI Design was taught at ASU East, The 

Western Design Center Inc. (WDC) supported this class by donating industry used 

software tools and their microprocessor Intellectual Property (IP) for the class to use in 

learning the concepts of VLSI Design. WDC continues to support the students at ASU 

East that are interested in VLSI design, by offering internships to give the students 

experience in the VLSI design flow. Students interested in using this tutorial will be able 

to work at WDC’s office and have access to the software tools and technology. The 

students will be following the design flow as used by WDC. The students will be exposed 

to the following design tools: ViewDraw for schematic entry, Silos for Verilog HDL 

simulation, ICED for laying out an IC, and PSPICE for electrical characterization. These 

tools, used in conjunction with the microprocessor technology of WDC, provide the 

students with a hands-on experience in VLSI design methodology. The students will also 

learn the value of design reuse by utilizing the standard cell library created by WDC. 

 The tutorial that was created introduces the students to the tools, concepts, 

methodology, and history of VLSI design. The students will gain hands-on experience by 

performing exercises related to each step of the VLSI design flow as it is used in 

industry. Thus, the students’ introduction to VLSI design with system-on-a-chip design 

reuse will be complete. 
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1. Introduction 
 

1.1 Background 

 

 A major factor in the electronics industry today is to make devices that are small 

and fast, and to get these devices to market in the fastest time possible. With the many 

advances in process technology over the years, it is now possible to integrate whole 

systems on a single chip. In the past, a system consisted of a printed circuit board that had 

on it one chip for RAM (Random Access Memory), one chip for ROM (Read Only 

Memory), one chip for a microprocessor, one chip for I/O (Input/Output) capabilities, and 

perhaps chips for A to D (Analog to Digital) converters, D to A (Digital to Analog) 

converters, and UART’s (Universal Asynchronous Receiver Transmitter). Today, one 

chip can contain a microprocessor core, RAM, ROM, I/O, A to D and so on. Thus we get 

the name System-on-a-Chip, (SOC). This is all possible due to VLSI (Very Large Scale 

Integration). 

 There are many aspects to VLSI design. There is the design of the system itself, 

which today is widely done using HDL’s (Hardware Description Languages). The 

schematic entry method is also used in system design. This is widely done by dropping in 

reusable Intellectual Property (IP) cores into the design. These IP cores are proven to be 

reliable by the manufacturer and can help speed up the design process. Then there is the 

verification of the design, running simulations to determine if the design is working as 

expected. There is the layout of the design where the layers that make up the circuit are 

physically defined. Layout can be done by placing and routing the design manually, or it 

can be done by an automatic place and route tool. After the design has been laid out and 

verified, the final step is to target the design for a manufacturing process and send the 
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design out to be fabricated. Typically, prototypes are fabricated first, in small quantities, 

to keep expenses down in case the design is faulty. After evaluating the performance of 

prototype devices, the design needs to be reworked if there are problems, or sent for 

fabrication in larger quantities if the design is performing as expected. Figure 1.1 shows a 

flowchart for the system-on-chip design process that is used by The Western Design 

Center, Inc. (WDC). A class in VLSI design is instrumental in giving the student an 

introduction to the theory and tools that are used in the development of an SOC. 

In the early days of system chip design, Negative Metal Oxide Semiconductor 

(NMOS) was the primary process used. The number of transistors on a single chip was in 

the thousands and the gate size was .5 microns or larger. The entire design process was 

very time-consuming as the circuit layout was manually compared to the circuit’s 

schematics.  

Over the years, the advent and refinement of HDL’s has allowed designers to 

develop the chip by describing the design’s hardware. Complementing HDL’s, many 

tools were developed for design automation. These tools could place and route a design, 

perform a design rule check of the design, and simulate the design to ensure proper 

functionality. 

Today, Complimentary Metal Oxide Semiconductor (CMOS) is the prevalent 

process used and transistor counts on a single chip are in the millions. The gate sizes of 

these transistors are .25 microns or less. Design automation has made the design of 

complex system chips faster and more efficient, cutting down on production time and 

increasing the time to market. 
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Figure 1.1 WDC flow chart for SOC design, manufacturing and test 
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1.2 Problem  
 

 The original intent of this project was to develop a much needed laboratory 

manual that was to accompany the class UET 513 – Introduction to VLSI Design. This 

was a class that had been taught at ASU East for five years, without any structured lab to 

coincide with the theory presented. Unfortunately, UET 513 is no longer offered at ASU 

East, leaving a void for students interested in pursuing a career in VLSI design. 

 The focus of this project has shifted from an accompanying lab manual to a 

hands-on tutorial that will introduce students to the concept of reusable IP and to some of 

the tools that are used in creating a SOC. This tutorial will provide the student with the 

necessary means in understanding the VLSI design flow.  

1.3 Scope 

 

The tutorial will introduce the students to the SOC design flow and the 

technology used at The Western Design Center Inc. WDC is located in Mesa, AZ, and 

was responsible for donating the computers, software tools, and IP that was used in UET 

513. The intent of this tutorial is to provide an introduction to VLSI design. Each of the 

sections will introduce the student to a different software tool, or program, used in the 

SOC design flow. It is important to note that only the basic elements of the tools will be 

presented to the student. Again, the objective of the tutorial is to introduce the student to 

the tool, not make them experts in using the tool. The student will use technology already 

available to them, showing them the value of design reuse. This will give the student an 

appreciation of the tools available to them, and help them understand how VLSI design is 

done today. 
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1.4 Assumptions 
 

It is assumed that senior level undergraduate students and graduate students, will 

be using this tutorial, and will have had little or no prior experience in VLSI design, but 

have some knowledge of semiconductor terminology and theory. It is also assumed that a 

tutorial is necessary to assist the student in learning the tools and techniques used in the 

SOC design flow. Furthermore, it is assumed that the students will be using this tutorial 

at the offices of WDC, where the tools will be available for their use. If the student would 

like to perform this tutorial, the student must contact WDC, sign a Non-Disclosure 

Agreement (NDA), and arrange with WDC times that the student can go to the WDC 

office to use the design tools. 

 

1.5 Sequence of Presentation  
 

Chapter 2 contains:  

- Separate sections for each step of the design flow 

- Introductory information about each step 

- Introduction to the design tool used in each step 

- Simple hands-on example demonstrating the usage of each tool 

Chapter 3 contains: 

- The tutorial using the components of the W65C122S SOC 

Chapter 4 contains:  

- Conclusions and recommendations 

The Appendix contains: 

- Information regarding Internships at The Western Design Center 

- Contact information for The Western Design Center, Inc. 

 



 

* Number in parenthesis indicates the reference at the end of this document. 

2. VLSI Design Flow 
 

2.1 Design entry 

 

The first step in the VLSI design flow is creating, or entering, a design. “The 

purpose of design entry is to describe a microelectronic system to a set of electronic 

design automation (EDA) tools” (4:327)*. There are two ways to accomplish this task. 

The first way is to enter the design via schematic entry, or schematic capture, where 

gates, symbols and interconnects are drawn using a computer program. The second way 

is to enter the design using a Hardware Description Language (HDL) such as Very High 

Speed Integrated Circuit Hardware Description Language (VHDL) or Verilog HDL. With 

this method, the designer describes the hardware by using software, and the code can be 

written using any text editor. After the code has been written, the code must be tested and 

debugged.  

In the early 1980s, before the advent of schematic design entry tools, schematics 

were drawn using a graphics editor or drawn by hand. This provided a picture of the 

schematic with no functionality behind the schematic. From this picture, the designer 

manually coded the netlist of the circuit that was used for simulation. So in reality, HDLs 

were used before schematic entry tools for circuit design. 

The Western Design Center, Inc. (WDC) has an interesting approach for their 

core designs in that they use the mask design editor to create a detailed “floor planning” 

schematic. The schematic can be edited and plotted on any Graphic Design System II 

(GDSII) editor, making it available to a wide range of users. GDSII is an Electronic 

Design Automation (EDA) industry standard binary format of the design that is used to 

transfer mask design data to a wafer fabrication shop (FAB).  
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The Verilog structural HDL is manually created by WDC and this corresponds to 

the GDSII schematic. This approach provides for complete control of naming every node 

manually, and helps in the mask design and debug phase of the design. 

2.1.1 Schematic entry 

 

There are several powerful software programs that can be used to enter a design 

using schematic entry. Cadence Design Systems and Mentor Graphics make some of the 

more popular, widely used ones. With each of these programs, the designer can use the 

manufacturers’ standard cell library, or import a custom cell library to draw the design. 

Figure 2.1 shows an example of a design that has been drawn using ViewDraw. 

ViewDraw is the schematic entry program in Mentor Graphics eProduct Designer (ePD) 

design suite. The schematic is the address decoder of the W65C122S. 
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Figure 2.1 Example of schematic entry – W65C122S address decoder 
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As can be seen in Figure 2.1, the schematic is a graphical representation of the 

design. This method is sometimes preferred because it provides an easily understood 

picture of the circuit. More importantly, it is not just a picture of the design, but a 

functional description of the design. The main goal in doing schematic design entry is to 

obtain an output file that can be used to simulate the circuit. Once the schematic is 

finished, the designer can extract a netlist of the design. This netlist is the output file that 

is used for circuit simulation. Circuit simulation will be discussed in section 2.2. 

2.1.2 Hardware Description Languages (HDLs) 

 

There are two main HDLs used for design entry in industry today. One is VHDL 

and the other is Verilog HDL. While both packages are excellent at modeling hardware 

structures, there are differences in each one. Therefore, choosing the package to use 

depends on personal preferences, EDA tools available, business and marketing issues 

(4:10). Figure 2.2 shows a comparison of VHDL and Verilog HDL for a Serial 

Adder/Subtractor. For an in-depth comparison of the two languages, see (4:10-14). 

2.1.2.1 VHDL 

 

VHDL “can be used to model a digital system at many levels of abstraction, 

ranging from the algorithmic level to the gate level” (1:1). With VHDL, the designer can 

describe the system in concurrent or sequential fashion, and may wish to include timing 

characteristics in the design.  

 There are four different ways to express the architecture of a system. The first is 

the structural method, where the system is “described as a set of interconnected 

components” (1:14). The second method is the data flow method, which uses concurrent 
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signal assignment statements. The third method is the behavioral method, where the 

system is described “as a set of statements that are executed sequentially in the specified 

order” (1:18). The last method is mixed style modeling which incorporates a mixture of 

the three previously mentioned methods. 

2.1.2.2 Verilog HDL 

 

Described as an easy to learn and use HDL, Verilog HDL is a general-purpose 

HDL whose syntax is very similar to C and PASCAL. As with VHDL, systems can be 

described at different levels of abstraction. “The designer can define a hardware model in 

terms of switches, gates, RTL (register transfer level), or behavioral code” (3:7).  

The highest level of abstraction is the behavioral level. At this level, the designer 

is concerned with describing the behavior of the circuit, and not how the circuit will be 

implemented using gates (3:115). At the data flow level, the system is described by 

specifying the actual data flow between registers, with knowledge on how this data is 

processed in the overall design. At the gate level, the system is described in terms of the 

individual logic gates and the interconnections between them. Finally, the switch level is 

the lowest level of abstraction, where the design “can be implemented in terms of 

switches, storage nodes, and interconnections between them” (3:16).  

The designer is also able to mix each level of abstraction in the design. The 

combination of behavioral and data flow is commonly called RTL. When higher levels of 

abstraction are used, the design is more flexible and technology independent. Designs are 

more technology dependent and inflexible when lower levels of abstraction are used 

(3:16). 
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VHDL Verilog 
library IEEE: 

use IEEE.STD_Logic_1164.all; IEEE.Numeric_STD.all; 

 
entity ADD_SEQ is 

    port (Clock, Reset: in  std_logic; 

    ParaLoad, Serialin, EnableShiftAdd: in std_logic; 
    CoeffData: in  unsigned(7 downto 0); 

    ParallelOut: out unsigned(7 downto 0)); 

end entity ADD_SEQ; 
 

architecture RTL of ADD_SEQ is 

    component FULL_ADD 
        port (A, B, Cin: in std_logic; Sum, Cout: out std_logic; 

    end component: 

    signal ShiftRegA, ShiftRegB: unsigned(7 downto 0); 
    signal Sum, Cout, HoldCout: std_logic; 

begin 

    REG_AB: process (Clock) 

    begin 

         if rising_edge(Clock) then 

        ----------------------- 
        --- Shift register A 

        ----------------------- 

        if (ParaLoad = ‘1’) then 
            ShiftRegA <= CoeffData; 

        elseif (EnableShiftAdd = ‘1’) then 
            Shift_RegA <= rotate_right(ShiftRegA, 1); 

         end if; 

        ----------------------- 
        --- Shift register B 

        ----------------------- 

        if (EnableShiftAdd = ‘1’) then 
             ShiftRegB <= rotate_right(ShiftRegB ,1); 

        end if; 

      end if; 
end process REG_AB; 

ParallelOut <= ShiftRegB; 

        ---------------------------- 
        --- Single bit full adder 

        ---------------------------- 

FA1: FULL_ADD port map 
    (A => ShiftRegA(0), B => ShiftRegB, 0), 

      (Cin => HoldCout, Sum => Sum, Cout => Cout); 

        ------------------------------------- 
        --- Hold carry out for next add 

        ------------------------------------- 

HOLD_COUT: process (Clock, Reset) 

begin 

    if (Reset = “0”) then 

        HoldCout <= ‘0’; 
    elseif rising_edge(Clock) then 

        if (EnableShiftAdd = ‘1’) then 

            HoldCout <= Cout; 

        else 

            HoldCout <= HoldCout; 

            end if: 

        end if; 

      end process HOLD_COUT; 

 end architecture RTL; 

module ADD_SEQ 

      (Clock, Reset, ParaLoad, CoeffData, Serialin, 

        EnableShiftAdd, ParallelOut); 
           input               Clock, Reset; 

           input               ParaLoad, Serialin, EnableShiftAdd; 

           input      (7:0) CoeffData; 
           output    (7:0) ParallelOut; 

 

            reg                 ShiftRegA_LSB; 
            reg        (7:0) ShiftRegA, ShiftRegB; 

            wire               Sum, Cout; 

            reg                 HoldCout;         
 

      always @(posedge Clock) 

           begin: REG_AB 
               //---------------------- 

               //  Shift Register A 

               //---------------------- 

               if (ParaLoad) 

                   ShiftRegA = CoeffData; 

               else if (EnableShiftAdd) 

                     begin 

                          ShiftRegA_LSB = ShiftRegA(0); 

                          ShiftRegA = ShiftRegA >> 1; 
                          ShiftRegA(7) = ShiftRegA_LSB; 

                     end 

                //------------------------ 

                // Shift Register B 

                //------------------------ 
                if (EnableShiftAdd) 

                    begin 

                       ShiftRegB = ShiftRegB >>1; 
                       ShiftRegB(7) = Sum; 

                    end 

             end 

             assign ParallelOut = ShiftRegB; 

    //----------------------------- 

    // Single bit full adder 
    //----------------------------- 

    FULL_ADD FA1 

     (.A(Serialin), .B(ShiftRegA(0)), 
     .Cin(HoldCout), 

     .Sum(Sum), .Cout(Cout)); 

 
     //----------------------------------- 

     // Hold carry out for next add 

     //----------------------------------- 
     always @(posedge Clock or negedge Reset) 

         begin: HOLD_COUT 

            if (!Reset) 
              HoldCout = 0; 

            else if (EnableShiftAdd) 

                 HoldCout = Cout; 

            else  

                 HoldCout = HoldCout; 

         end 

 

 endmodule 

 

Figure 2.2 Comparison of VHDL and Verilog for a serial adder/subtractor 
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2.1.3 Introduction to ViewDraw 

 

As previously mentioned, The Western Design Center, Inc. uses ViewDraw for 

their schematic entry tool. ViewDraw is part of the Mentor Graphics ePD tool suite. This 

section will provide a basic introduction to ViewDraw, introducing the design 

environment, WDC’s standard cell library, and the schematic editor.  

2.1.3.1  Introduction to creating a schematic in ViewDraw 

 

The first step in the process of drawing a schematic is to create a project where all 

libraries and design files are stored. To create a project, double-click on the eProduct 

Designer 2004 icon on the desktop. This will launch the ePD Dashboard, where the 

project is created and the project hierarchy is stored. After opening up Dashboard, your 

screen will look similar Figure 2.3. 

 

Figure 2.3 ePD dashboard main window 
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Click on File → New → Project. Your screen will look similar to Figure 2.4. 

 

Figure 2.4 ePD new project window 

In the Name field, type in a name for the project. For this example, type in 

VDExample for ViewDraw Example. Notice that the text below the Location field states 

that the project will be created in C:\VDExample. This can be changed by using the 

Browse button if desired, but for this example, we will not change this directory. Next, 

click OK. Your screen will look similar to Figure 2.5. 
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Figure 2.5 ePD dashboard view of projects 

 Figure 2.5 shows the Dashboard after the creation of the project VDExample. 

Notice that VDExample is listed in bold and has the word active next to it. This indicates 

that VDExample is the active project and any work done will be saved in the VDExample 

project hierarchy.  

 The next step is to import the library or libraries that we will use to create a 

schematic. The library will have all of the schematic symbols that will be placed onto the 

schematic drawing. For the purposes of this example, we will be using the builtin library 

that is standard with ViewDraw. To add this library, click on the Library icon on the 

toolbar. Your screen will look similar to Figure 2.6. 
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Figure 2.6 ePD add library window 

 Click on the Browse button next to the Path field, as shown in Figure 2.6, and 

browse to the following directory: C:\MentorGraphics\2004\wv\tutor\digital. Select the 

builtin directory and click OK. Your screen will look similar to Figure 2.7. 

 

Figure 2.7 ePD library window 
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Click OK. Your screen will now look similar to Figure 2.8. 

 

Figure 2.8 ePD dashboard view with builtin library added 

 Notice now that the builtin library is listed under the Library directory, indicating 

that the library has been successfully added to the project. We are now ready to begin 

entering our schematic into ViewDraw. To do this, click on the project VDExample 

(active). Your screen will look similar to Figure 2.9. 

 

Figure 2.9 ePD dashboard view of complete VDExample project 
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Double-click on the VDExample.dproj icon, as shown in Figure 2.9. This will 

automatically open up ViewDraw. Note: The software protection key, called a dongle, 

must be attached to the parallel port of the computer in order for ViewDraw to open. If 

ViewDraw is not opening, ask the system administrator at WDC to assist you. After 

ViewDraw opens, your screen will look similar to Figure 2.10. 

 

Figure 2.10 ViewDraw main welcome window 

The first step is to create a new schematic drawing. To do this, click File → New. 

Your screen will look similar to Figure 2.11. 
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Figure 2.11 ViewDraw new schematic window 

This window has Schematic selected as the default. If for some reason Schematic is not 

selected, click on the Schematic icon to select it. In the Name field, type in a name for the 

schematic. For this example, type in VDExample and click OK. Your screen will look 

like Figure 2.12. 

 

Figure 2.12 ViewDraw schematic window 



 18 

We are now ready to begin drawing a schematic. To draw a schematic, you have 

to pick components from the library, place them onto the schematic, and connect the pins 

by drawing wires from pin to pin. There are 2 ways to add a component. The first way is 

by clicking Add → Component from the Standard (File) toolbar. The second way is by 

clicking on the Component icon on the toolbar, shown in Figure 2.12. Using either 

method to add a component, your screen will look like Figure 2.13. 

 

Figure 2.13 ViewDraw add component window 

This window shows the available symbols in the builtin library. If the symbols are 

not listed, click on the builtin directory as shown in Figure 2.13. When a symbol is 

selected, a preview of the symbol is displayed in the preview window, as shown in Figure 

2.14. 



 19 

 

Figure 2.14 ViewDraw add component with preview window 

Here, a 2-input, AND gate is selected and the preview of the symbol is shown. To 

place the symbol onto the drawing, click the Place button and drag the mouse to the 

drawing window, as shown in Figure 2.15. 

 

Figure 2.15 Symbol placement on schematic  
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Click the left mouse button to place the symbol onto the drawing area. Now, place 

a few more parts onto the drawing area. For this example, place two more 2-input, AND 

gates onto the drawing area. When complete, click the Close button on the Add 

Component window. Your screen will look similar to Figure 2.16. 

 

Figure 2.16 ViewDraw schematic window with added components 

 Next, zoom into the area of the three AND gates by clicking the Zoom Area icon 

on the toolbar as shown in Figure 2.16. Click this icon once to select it, then, using the 

mouse, draw a square around the three AND gates. To do this, place the cursor 

somewhere in the upper left corner of the top AND gate. Click and hold the left mouse 

button. Keeping the mouse button depressed, move the mouse down and to the right. You 

will see that a box is displayed as you move the mouse, showing the area that will be 

zoomed in on. Once you have the box around all three AND gates, release the mouse 

button. You will see that the AND gates have been magnified and that a grid now appears 

on the drawing. Your screen will look similar to Figure 2.17. 
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Figure 2.17 Schematic zoom view 

 Now, with the drawing grid in view, you can line up the symbols anyway that you 

want. To move the symbols around, place the cursor over the symbol you want to move, 

click and hold the left mouse button, and drag the symbol to the desired location. Release 

the mouse button when the symbol is at the desired location.  

 After the symbols are lined up, the next step is to connect the pins together using 

the wire command. Click on the Wire icon, as shown in Figure 2.17, to activate this 

mode. For this example, we will connect the A inputs of two AND gates to each other 

and the B inputs to each other. The outputs of each AND gate will connect to the inputs 

of the third AND gate. The purpose of this example is not to make a functional 

schematic, but to introduce you to the basic functions of ViewDraw.  

 In Wire mode, place the cursor at the A input of the topmost AND gate. Click and 

hold the left mouse button. Drag the cursor to the left for a few grid spaces. You will see 

that a wire is being drawn as you move the cursor. Releasing the mouse button will end 
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the wire at that location. Note that you are still in Wire mode. Now, place the cursor at 

the end of the wire you just drew. Click and hold the left mouse button and drag the 

cursor to the grid line that is associated with the A input of the bottom left AND gate. 

Release the mouse button to end the wire here. Again, place the cursor at the end of this 

wire, click and hold the left mouse button, and drag the cursor to the A input pin of the 

AND gate. Repeat this process to connect the B inputs together, as well as connecting the 

outputs of the left AND gates to the inputs of the right AND gate. When complete, your 

screen should look similar to Figure 2.18. 

 

Figure 2.18 Example of schematic with components connected 

 The next step is placing and connecting power and ground pins to the schematic. 

As discussed before, go to the Add Component window, select the gnd and pwr symbols 

and place them onto the schematic. Place the symbols and connect them up as shown in 

Figure 2.19. 
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Figure 2.19 Example of completed schematic 

 Next, we want to name the internal nets. For this example, we will name the 

power and ground nets as VDD and VSS respectively, and the outputs of the two AND 

gates OUT1 and OUT2. By default, ViewDraw automatically names any net connected to 

a pwr or gnd symbol VDD and VSS. However, for this exercise, we will rename these 

nets so that the name is visible on the schematic.  

 To name a net, place the cursor on any segment of the net and double-click the 

left mouse button. Do this for any segment of the net connected to the pwr symbol. A 

pop out window will appear and your screen will look like Figure 2.20. 
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Figure 2.20 Net properties window 

In the Label field, type in VDD, verify that the Visible box is checked as shown in 

Figure 2.20, and press OK. Your screen will now look similar to Figure 2.21. 

 

Figure 2.21 Schematic with net names visible 
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With the net name visible, you may want to move the location of the name. To do 

this, click on the name to highlight it as shown in Figure 2.21. Then, move the cursor 

over the name, press and hold the left mouse button, and drag the name to a good 

location. It may also be desirable to rotate the name. To rotate the name, select the name 

as described above and click on the Rotate icon, as shown in Figure 2.21. This will rotate 

the name 90 degrees each time this icon is clicked. 

Follow the same procedure to name the three remaining nets. When completed, 

your screen will look similar to Figure 2.22. 

 

Figure 2.22 Schematic with all net names visible 

The final step in this example is saving and checking the schematic for errors. To 

save and check the schematic, click on the Save and Check icon on the toolbar, as shown 

in Figure 2.22. ViewDraw will save the schematic and check the design for any errors, 

such as unconnected pins or un-named nets. If any errors are found, an error message 

window will appear informing you of the errors and where they are on the schematic. 
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 ViewDraw is a very powerful tool and has many more capabilities that are not in 

the scope of this example to discuss. It is recommended that the user gets more familiar 

with ViewDraw by using the online help features and getting started tutorials that are 

available within the tool itself.  

2.2 Design simulation  

 

After the design has been entered using either of the above-mentioned methods, 

the design needs to be checked to verify its functionality. In the past, prototypes of the 

circuit were built and used to check the circuit. This method was feasible if designs were 

small and standard parts were used. With the complexity of today’s circuits, prototyping 

is impractical. Therefore, for complex designs utilizing SOCs, ASICs, (Application-

Specific Integrated Circuits) and FPGAs (Field Programmable Gate Arrays), a simulator 

is used to verify the designs functionality.  

“Simulation is the fundamental and essential part of the design process for any 

electronic based product. Simulation is the process of verifying the functional 

characteristics of models at any level of behavior, from high levels of abstraction down to 

low levels” (4:14). 

The simulator itself is a software tool that is used to simulate hardware models. 

Many times it is part of a design package, such as ePD, or can be a standalone tool such 

as Silos. With ePD, the designer can enter a design using schematic entry and perform a 

simulation of the design using one tool. Silos is strictly a Verilog HDL simulator, with no 

provisions for schematic entry.  

Although The Western Design Center, Inc. uses ePD for schematic entry, they do 

not have a license for the simulation tool that is part of ePD. WDC uses Verilog as their 
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choice for design entry and they use Silos for all their simulations. This does not mean 

that schematics entered using ViewDraw cannot be simulated. ViewDraw has a utility 

called Verilnet, which is a Verilog netlister. When the Verilnet utility is run on a 

schematic, it creates a Verilog description of the schematic, called a netlist. The netlist 

describes all the components in the design and their interconnections.  The netlist also 

includes the model parameters for the devices used in the design. This netlist is then used 

as the top level design that is used by the Silos Verilog simulator.  

Along with the top level design or netlist, the simulator requires a stimulus file in 

order to perform a simulation. The stimulus file, or test bench, is a Verilog model that 

invokes the top level design and drives the different signals in the design. The test bench 

will usually have a clock defined in it and it will exercise each input with respect to the 

clock. For example, if the design is a two bit adder, the test bench will place a pattern of 

1’s and 0’s on the adder’s inputs. The output of the adder for the various input patterns 

can be stored in an output file, and this output file can be examined to verify that the 

adder is working properly.  

The results can also be analyzed by viewing the waveforms that are generated by 

the simulator. By observing the waveforms, the designer can verify if operations are 

taking place when they are supposed to and if there are any conflicts. Using the adder 

example, if input A and input B are added together, the correct result should show up on 

the Sum output signal. If not, then there is a problem with the design and the design 

needs to be evaluated to find the problem. Once the functionality of the design has been 

verified, the designer can proceed to the next step in the design flow, the layout of the 

design. This is discussed in Section 2.3. 
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2.2.1 Introduction to Silos 

 

The Western Design Center, Inc. uses Verilog as their primary design entry 

format and WDC uses Silos as their Verilog simulator of choice. Silos is a product of 

Silvaco and can be used as a component in their suite of design tools, or used as a 

standalone tool. WDC uses Silos as a standalone tool. This section will give a brief 

introduction to Silos, describing the creation of a project, adding files to the project, 

performing a simulation and viewing the simulation results of a simple Verilog design.  

2.2.1.1 Introduction to simulating a design using Silos 

 

 The first step to performing a simulation is to create a Silos project. All files used 

for the design and simulation are stored within this project. These files include the top 

level Verilog model of the design, the test bench files and any supporting library files. To 

begin, create a directory on the C:\ drive of the computer called C:\Silos_Example. This 

will be where we will create the project and store the project files. Open up Silos by 

double-clicking on the Silos icon on the desktop. Note that Silos is protected by a 

hardware dongle, and this dongle must be attached to the computer’s parallel port in 

order for Silos to open. After opening Silos, your screen will look like Figure 2.23. 
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Figure 2.23 Silos main window 

 Next, create a new project by clicking File → New Project from the menu toolbar. 

This will cause the Create New Project window to appear and your screen will look like 

Figure 2.24. 

 

Figure 2.24 New project window in Silos 
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 In the File name field, type in a name for the project. For this example, call the 

project Silos_Example. The extension of the file name for a project is .spj. Browse to 

C:\Silos_Example and click Save. After clicking Save, a Project Properties window 

appears and is shown in Figure 2.25. 

 

Figure 2.25 Silos project properties window 

 The Project Properties window will show all of the files that are associated with 

the project. At this time, we do not have any files to add to the project, so click Cancel to 

close this window. The screen will return back to the main Silos window. 

 Next, we must create the source and test bench files for our project. To 

demonstrate this, we will create the Verilog top level module and test bench of a 4-bit full 

adder. This example is taken from (7:206-208). The text for the files can be written in any 

text editor, such as WordPad or Notepad. Silos also has a text editor to enter source code. 

For this example, we will use the Silos text editor.  

 To create a new file in Silos, click File → New. This will open a blank source 

window as shown in Figure 2.26. 
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Figure 2.26 Silos text editor window 

Type the source code shown in Figure 2.27 into the text field. Notice that as you 

type, the editor changes the color of comments and Verilog reserved words, and adds line 

numbers. 

module fourbitadder(sumout, carryout, ain, bin, cin, clock); 

 

output [3:0] sumout; 

output carryout; 

input [3:0] ain, bin; 

input cin, clock; 

wire [3:0] ain, bin, sumout_tmp; 

wire cin, carryout_tmp; 

reg [3:0] sumout, ain_tmp, bin_tmp; 

reg carryout, cin_tmp; 

 

always @(posedge clock) begin 

  carryout = carryout_tmp; 

  sumout = sumout_tmp; 

  cin_tmp = cin; 

  ain_tmp = ain; 

  bin_tmp = bin; 

end 

assign {carryout_tmp,sumout_tmp} = ain_tmp + bin_tmp + cin_tmp; 

endmodule 

 

Figure 2.27 4-bit adder Verilog model (adder.v) 
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 When you are done typing in the code, save the file to C:\Silos_Example and 

name the file adder.v. Next, create a new file as described above and type in the test 

bench code shown in Figure 2.28. 

module testbench; 

wire [3:0] sumout; 

wire carryout; 

reg [3:0] ain, bin; 

reg cin, clock; 

integer i, j; parameter cycle = 100; 

fourbitadder INST(sumout, carryout, ain, bin, cin, clock); 

// adder4 INST(sumout, carryout, ain, bin, cin, clock 

initial clock = 0; //non-synthesizable clock 

always #(cycle/2) clock = ~clock; //generator 

  

always @(posedge clock) begin 

 cin = 0; ain = 0; bin = 0; 

 for ( i=0; i <= 15; i = i + 1) begin 

  #cycle ain = i; 

  for (j = 0; j <= 15; j = j + 1) 

  #cycle bin = j; 

 end 

 #cycle cin = 1; 

 for (i = 0; i <= 15; i = i + 1) begin 

  #cycle ain = i; 

  for (j = 0; j <= 15; j = j + 1) 

   #cycle bin = j; 

 end 

  #cycle $finish; 

 end 

 initial begin 

  $monitor("%0d ", $time,, "clock = ", clock, 

  " cin = ", cin, 

  " ain[0] = ", ain[0], 

  " ain[1] = ", ain[1], 

  " ain[2] = ", ain[2], 

  " ain[3] = ", ain[3], 

  " bin[0] = ", bin[0], 

  " bin[1] = ", bin[1], 

  " bin[2] = ", bin[2], 

  " bin[3] = ", bin[3], 

  " s[0] = ", sumout[0], 

  " s[1] = ", sumout[1], 

  " s[2] = ", sumout[2], 

  " s[3] = ", sumout[3]); 

 end 

endmodule  

 

Figure 2.28 Test bench for the 4-bit full adder (test_bench.v) 
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 When you are done typing in the code, save the file to C:\Silos_Example and 

name the file test_bench.v. We are now ready to add the two files to the project that we 

created earlier. 

 To add the files to the project, click on Edit → Project Properties. Your screen 

will look like Figure 2.29. 

 

Figure 2.29 Silos project properties window 

 Next, click the Add button. This will bring up a file browser window, which 

defaults to the C:\Silos_Example directory. The two files that we created adder.v and 

test_bench.v are listed. There are two ways to add these files into the project; the quick 

method is to select each file while holding down the CRTL key, then click Add. This will 

add both files to the project at the same time. Alternately, you can select each file 

individually, then click Add, and repeat the process for the other file. After adding the 

files to the project, they are placed in the Source Files window, indicated in Figure 2.29. 

After adding both files to the project, your screen will look similar to Figure 2.30. 
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Figure 2.30 Silos project properties window with added files 

Click OK to close the Project Properties window. The screen will return to the main Silos 

window. 

 Now that the files have been added, the next step is to simulate the project. To do 

this, click the Start Simulation icon as indicated in Figure 2.30. If there are no errors in 

the source or test bench files, the simulation will begin and your screen will look similar 

to Figure 2.31. 

 

Figure 2.31 Silos simulation result window 
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 If an error was made in typing the source or test bench files, Silos will indicate the 

file name, error and the line number where the error is found. Debug the files as needed 

until the simulation runs correctly. The simulation will take a few seconds to complete. 

 Figure 2.31 shows the beginning stage of the simulation. Silos reads in the source 

and test bench files, checks them for errors, and then runs the simulation if no errors are 

found. The output shows the status of the clock, ain inputs, bin inputs and the sum 

outputs. This pattern continues until the $finish line in the test bench file is executed. 

 Next, we want to look at some of the signals in a waveform view. To do this, we 

need to open the Explorer and Analyzer windows within Silos. To do this, click on the 

Analyzer and Explorer icons, as shown in Figure 2.31. After clicking each icon, your 

screen will look similar to Figure 2.32. 

 

Figure 2.32 Silos analyzer and explorer window view 
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 In the Explorer window, the module testbench is listed. Click the module name to 

select it. The signals that can be viewed are displayed. To add a signal to the Analyzer, 

select a signal to highlight it, then right-click over it to display a pop out menu. For 

example, select the signal clock to highlight it and then right-click the mouse. The screen 

should look like Figure 2.33. 

 

Figure 2.33 Adding signals to the analyzer 

In the pop out menu, click on the Add Signal(s) to Analyzer option. Your screen will now 

look similar to Figure 2.34. 

 

Figure 2.34 Analyzer window with clock signal added 
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 Repeat this procedure to add the ain, bin, cin and sumout signals to the Analyzer. 

Your screen should now look similar to Figure 2.35. 

 

Figure 2.35 Analyzer window all signals added 

 Figure 2.35 shows only a small portion of the complete test. To view the signals 

in a different time scale, use the Zoom Out icon, shown in Figure 2.35. There is also a 

Zoom Full icon which will show all of the transitions for the whole time duration. 

However, this is not practical for analysis, as the signals are all compressed and not 

viewable. Click the Zoom Out icon a few times so that your screen looks similar to 

Figure 2.36. 
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Figure 2.36 Analyzer window with signals viewable 

Note that the values of the registers are displayed within the waveform. This 

makes it easier to debug the project. Using the waveform view, the designer can monitor 

each signal with respect to the clock and analyze the output to see if the desired result is 

achieved. If the simulation results are correct, the design can move to the next step in the 

process. If the simulation produces incorrect results, the source files need to be debugged, 

corrected and re-simulated until proper functionality is achieved. 

 At this point, we have created a project, entered in the source code and test bench 

code, ran a simulation and viewed the simulation results. There are other features of Silos 

that are not in the scope of this introduction to discuss. It is recommended that the user 

get more familiar with Silos by utilizing the online help and tutorials available within 

Silos. 

 



 39 

2.3 Physical layout of the design 

 

The next step after design simulation is to do the physical layout of the design. 

The layout is done using an IC layout editor program. It is here that the design is laid out, 

as it will appear on silicon. The N and P regions of the transistors are defined, the 

polysilicon interconnect layers and the metal layers are drawn. In most cases, more than 

one layer is used. In this case, vias are used to provide interconnects between the layers.  

Figure 2.37 shows the physical layout of the Address Decoder used in the W65C122S. 

 

Figure 2.37 Physical layout of the W65C122S address decoder 
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Once the layout has been completed, the layout must have a DRC (Design Rule 

Check) done on it. This is to insure that all design rules for the chosen technology have 

been followed. It checks for the correct spacing between poly lines, and the correct width 

of both poly and metal lines to name a few. Table 2-1 gives the American Microsystems 

Inc. Semiconductor (AMIS) standard diffusion layer design rules for their CMOS .5 

process. 

Table 2-1 AMIS .5micron process diffusion layer design rules 

 

Rule  

Name 

Rule Description Rule Units Rule  

Type 

Notes 

DIFSP Min DIFfusion SPacing 0.90 m *  

DIFW Min DIFfusion Width 0.50 m * Resistors less than 0.8 µm 

wide do not meet 

Parametric Specs and are 

not modeled accurately in 

simulation. 

TBEOND TuB Enclosure Of N-Diffusion 0.00 m * Well Tie Only 

TBEOPD TuB Enclosure Of P-Diffusion 1.50 m *  

TBNDSP TuB to N-Diffusion SPacing 1.50 m *  

TBPDSP TuB to P-Diffusion SPacing 0.00 m * Substrate Tie Only 

TRANW Minimum TRANsistor Width 0.80 m *  

(Rule Type: * Required, ** Recommended, Checked, *** Suggested, NOT Checked) 

 

Once the layout has been completed and the DRC passes, the designer extracts a 

netlist of the layout, called NLE (NetList Extraction). The netlist describes the nodes and 

interconnects of the design. This netlist is used to perform an LVS (Layout versus 

Schematic) check. It is here that the schematic netlist is compared to the layout netlist. If 

the netlists match, the design can go to the final simulation before being sent out for 

fabrication. If the netlists do not match, the layout and the schematic need to be 

rechecked and corrected accordingly. In most cases, the mismatch lies within the layout, 

as the design has already been verified by simulation. For example, if in the schematic 
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point A is connected to point B, but in the layout point A is connected to point C, the 

LVS will detect the error and point the designer to the problem area. 

WDC, as well as many other companies, have their own standard cell library and 

design rules that they use for their designs. These cells (NAND gates, NOR gates, I/O 

Pads, etc…) are laid out individually according to the design rules and then placed into a 

library. When a new circuit needs to be laid out, the parts are picked from the library and 

then placed into the layout drawing. “Placement is the task of placing modules adjacent 

to each other to minimize area or cycle time” (6:431). 

After the cells or modules have been placed, the modules need to be connected 

together. There are two methods to connect up, commonly referred to as routing, the 

modules. The first method is to manually route the interconnections to each module, 

which can be time consuming, but can better optimize the design by minimizing the 

lengths of the interconnections. The second method is automatically routing the 

interconnections. The automatic routing tools need input files or algorithms in order to 

guide the routing process. There are tools that will also automatically place the cells or 

design blocks, as well as perform automatic routing. Automatic place and route tools are 

very powerful, high-end tools, therefore very expensive. WDC uses the manual place and 

route method to layout a design. 

It is important to note that all of WDC’s designs are done using WDC’s 

proprietary, 2-micron retargetable design rules. Once the design is laid out using the 

WDC design rules, the DRC is done against these rules. If the DRC passes, NLE and 

LVS can be performed on the design. Once the design passes DRC and LVS, the design 
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can then be retargeted to a particular foundry for fabrication using the foundries design 

rules. This retargeting process will be discussed in Section 2.4.  

2.3.1 Introduction to ICED 

 

There are many IC Layout tools available, some are very costly and very powerful 

tools and some are free to use for non-commercial purposes. WDC uses the IC EDitor 

(ICED) layout software. This software is widely used in the industry and it is also used to 

perform the DRC and LVS on the design. 

 Laying out a design is a very complex process and will take some time to learn 

how to do it properly. Teaching how to do layout is beyond the scope of this tutorial. 

However, this section will introduce the user to the ICED software, and discuss some of 

the basic operations that will be needed in Chapter 3. This section will not go into 

performing a DRC or LVS on a design. 

2.3.1.1 Working with ICED 

 

 As with the other software programs previously discussed, ICED is protected by a 

hardware key attached to the parallel port of the computer. Verify that this key is attached 

before working with ICED. 

 To begin, double-click on the ICED icon on the desktop of the ICED computer. 

You will get a DOS prompt as shown in Figure 2.38. ICED is designed to run using a 

DOS environment. We will utilize the C:\ICWIN\TUTOR directory for the remainder of 

this exercise. At the DOS prompt, change the working directory by typing: cd tutor. The 

DOS prompt should now read C:\ICWIN\TUTOR. Now, type: del *.* to erase the 

contents of the TUTOR directory. 
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Figure 2.38 ICED ICON DOS window 

 As previously mentioned, WDC has their own set of design rules that define the 

layers for the N-Well, Poly and Metal layers to name a few. These layer definitions are 

located in a command file that ICED calls when it is invoked.  

 To open ICED, you must call this command file and provide a cell name, for 

example, TEST. At the DOS prompt, type: icwind test. Your screen will look like Figure 

2.39. 

 

Figure 2.39 ICED editor window 
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ICWIND is the name of the command file that will start ICED and call all of the 

command files needed, including the file with the layer definitions. 

 We are now ready to start drawing a cell. For this example, we will draw an 

NMOS transistor, introducing you to WDC’s layers and some basic functions of ICED. 

First, click the UseLay option from the menu on the right side of the window. Your 

screen will look like Figure 2.40. 

 

Figure 2.40 ICED editor window showing layer menu 

The menu now shows the WDC layers. Click the layer called NW9, as this layer 

is the N-Well layer. Notice that the menu items have changed. To add a box for the N-

Well, click Box from the menu. Draw a box in the drawing window, similar to the one 

shown in Figure 2.41. We are not concerned at this point with the size of the box, as we 

are not following any design rules. If we were drawing an actual gate to be used in a 

design, we would have to follow the design rules and draw the N-Well, and other layers, 

following these rules. 
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Figure 2.41 ICED editor window showing N-Well 

 Next, we want to draw a poly line. As before, click UseLay, then PS3 for the poly 

layer. Add a box to the drawing as shown in Figure 2.42. 

 

Figure 2.42 ICED editor window showing N-Well and Poly layers 

 Next, we will add contacts to the source and drain regions. Again, click UseLay 

and select layer C16 for the contact layer. Add a box to the source and drain regions as 

shown in Figure 2.43. 
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Figure 2.43 ICED editor window showing NMOS transistor 

 The last thing that we want to do is add some text to the drawing. To do this, 

Under the Add menu, click the Text option as shown in Figure 2.43. At the bottom of the 

screen will be a prompt reading Enter Text:. Type in Source and press Enter. This will 

add a box in a random location on the drawing. Using the mouse, move the text box to 

the source area and place the text box under the contact and press the left mouse button to 

anchor it. Do the same for the Drain and place the text for the Gate at the bottom of the 

poly line. When finished, your screen should look similar to Figure 2.44. 

 

Figure 2.44 ICED editor window with text on drawing 
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 Now, under the View menu, click All, as shown in Figure 2.44. This will reformat 

the drawing window and expand the drawing to maximize the view. 

 This concludes the introduction to ICED. At this point, if we were drawing this to 

follow a set of design rules, a DRC would have to be run to ensure that all rules were 

correctly followed. If a schematic of the transistor was created, we could also do an LVS 

to make sure that our schematic netlist matched the layout netlist. 

 This section discussed a few basic operations and briefly touched on the 

capabilities of ICED. Students are encouraged to follow the comprehensive tutorial 

provided by ICED in order to gain a better understanding of ICED and learn a few more 

of the basic functions. The tutorial is located in C:\ICWIN\DOC. 

 To exit out of ICED and save all of the work done, type Exit at the prompt in the 

lower left corner of the editor window and press Enter. This will save the design in the 

Tutor directory and the file will be called test.cel. The ICED ICON DOS window is still 

open at this point, and can be closed by typing Exit at the DOS prompt. 

2.4 Scaling and sizing the design (Retargeting) 

 

Once all of the above steps are complete, the design is ready to be prepared for 

fabrication. In order for fabrication to take place, a foundry and one of their processes 

have to be chosen as a target for the design. As an example, for the device to be 

fabricated using the AMIS .5 process, the transistors have to be scaled accordingly and 

the AMIS .5 design rules must be followed.  

An existing design can also be retargeted for a different process within the same 

foundry. If a design was first manufactured using a foundries .25 technology, it can now 

be manufactured using their .18 technology by scaling the transistors. 
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Sizing means to adjust the widths and spacing of the lines after they have been 

scaled, with the result being that they pass the targeted processes DRC’s. The Western 

Design Center, Inc. has a unique approach when it comes to sizing a design. WDC has 

developed an Excel spreadsheet that has their design rules entered in one column. 

Another column is where the design rules for the targeted process are entered. The 

spreadsheet is then run and any errors detected will be reported. If design rule violations 

exist, further scaling and/or selective biasing may be required. Sometimes rule violations 

are not critical and can be ignored. In this way, a design that is done using WDC’s design 

rules can be retargeted to any manufacturing process. 

“The main benefits of scaling are (1) smaller device sizes and thus reduced chip 

size, (2) lower gate delays, allowing higher frequency operation, and (3) reduction in 

power dissipation” (2:120). Due to the smaller device sizes, more devices can fit on a 

wafer, resulting in a higher yield per wafer. For more information on scaling MOS 

transistors, see (6:250-255). 

Once the scaling, sizing and layer mapping to the targeted process have been 

completed, this information is then put into files that ICED will use to DRC the design 

for the targeted process. When the DRC passes, LVS must be run on the design to ensure 

there were no errors caused in the retargeting process. When the retargeted design passes 

the DRC and LVS, the design is now ready for PSPICE simulation to check the electrical 

and timing characteristics of the design. 

 

2.5 Electrical characterization and timing analysis 

 

In this part of the design flow, the circuit is checked for its electrical 

characteristics and more intensive timing analyses are performed. The electrical 
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characterization shows the operating voltages and currents throughout the design. The 

timing analysis will show switching times, set-up times, hold times and provide 

information on how fast the design will run. The timing analysis will also show the 

critical paths in the design. A critical path is the path that has the longest delay. If speed 

is a concern, the critical paths can be redesigned to minimize any delays.  

Timing analysis can only be done after the layout, DRC, LVS and any retargeting 

steps have been completed. WDC uses PSPICE to perform timing analysis on designs. 

PSPICE, a Cadence Design Company product, is one of the more prevalent tools used to 

perform electrical characterizations on circuits. 

In order for a PSPICE simulation to be performed, a netlist that can be read by 

PSPICE must be created. This PSPICE netlist is created from the netlist that was 

extracted from the layout using ICED. The netlist format created by ICED is not readable 

by PSPICE and needs to be converted into a PSPICE-readable netlist. WDC has created a 

PERL (Practical Extraction and Report Language) script that performs this conversion. 

Once the PSPICE netlist has been created, the PSPICE simulation can be performed. 

2.5.1 Description of PSPICE simulation setup 

 

 This section will describe the files used for performing a PSPICE simulation and 

how to set up the PSPICE simulation. A PSPICE simulation takes about 10 hours to 

complete and is beyond the scope of this document to perform. The purpose of this 

section is to introduce WDC’s concepts behind setting up a PSPICE simulation. 

2.5.1.1 The PSPICE simulation files 

 

 This section lists each of the files required to perform a PSPICE simulation and 

provides a description of each file. 
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 Filename.cir – This CIRcuit file is the top level or project file for the simulation. 

This file contains all of the files required for simulation.  

 Digital.inc – This file contains the Memory (RAM), A to D and D to A 

converters, buffers and logic circuitry that is used for the test setup. 

 Model.inc – This file contains the transistor and capacitor model parameters that 

are used for simulation. These model parameters are the target foundries model 

parameters. For example, if the device is to be manufactured on the TSMC .5 

process, this file would contain the TSMC .5 transistor and capacitor models. 

 Probe.inc – This file contains the nodes that we want to look at and analyze after 

the simulation has completed. Both analog and digital nodes are specified here. 

 Stimulus.stm – This is the file where the input signals needed for the simulation 

are defined. WDC uses a table to drive the inputs, referred to as table driven 

inputs. 

 Netlist.net – This file contains the actual netlist of the design that is used for the 

simulation. This is the file that was created by converting the layout netlist using 

the PERL script. 

 Ram.ihx – This file is used to program the RAM with the test data. The test data 

in this file is in the Intel hex format. 

2.5.1.2 Setting up the PSPICE simulation 

 

 As previously mentioned, preparing for and running a simulation takes quite a 

long time and is beyond the scope of this tutorial. However, in order to gain an 

understanding of the process, the following section will describe the steps required for 

running a simulation using the W65C02S microprocessor as an example.  
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 WDC has a folder on their file server called W65C02S, and in this folder are 

subfolders pertaining to various design steps for the W65C02S. The directory 

F:\W65C02S\PSpice\Example\Simulation contains the following files: W65C02.cir, 

digital.inc, model.inc, probe.inc, stimulus.stm, netlist.net and ram.ihx, as well as PSPICE 

generated files. These are the files that are required for simulation and these files have 

been described in Section 2.5.1.1. The transistor and capacitor model parameters that 

were used for the W65C02S simulation are the parameters of the Taiwan Semiconductor 

Manufacturing Corporation (TSMC) .5 process. If a different TSMC process is to be 

used, the model parameters in model.inc will have to be changed while all other files 

remain the same. Copy the F:\W65C02S\PSpice\Example\Simulation directory to your 

C:\ drive so as not to alter the source directory. 

 To begin, the file W65C02.cir is opened by double-clicking it. This automatically 

opens PSPICE and Figure 2.45 shows the opening window. 

 

Figure 2.45 PSPICE main window 

Figure 2.45 shows the contents of the .CIR file and lists the time that the 

simulation is to run to, parameter declarations, and file names for running the simulation. 
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 As previously mentioned, the simulation will take about 10 hours to complete, 

therefore it will not be performed here. However, the following will describe the process 

for completeness. A simulation is started by clicking on the blue arrow as shown in 

Figure 2.45. There will be some activity in the bottom right hand corner of the PSPICE 

window. It will give the percentage completed of the simulation and the time in s where 

the simulation is currently running at. 

 When the simulation is completed, PSPICE creates a data file, a vector file and 

other files that are associated with the simulation. To view the waveforms, open the data 

file W65C02.dat by double-clicking it. Figure 2.46 shows the data (waveform) window. 

 

Figure 2.46 PSPICE waveform window 

To add the signals that you want to analyze, click the Add Trace icon as shown in 

Figure 2.46. This will cause a pop-out window to appear and your screen will look like 

Figure 2.47. 
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Figure 2.47 PSPICE add trace window 

The nodes that were defined in the probe.inc file appear in the left column of the 

window while mathematical functions appear in the right hand column. To view a signal, 

locate the desired signal from the left column and double click it. This will place it in the 

Trace Expression field indicated in Figure 2.47. For this example, select the following 

signals: D0Q, D1Q, D2Q, D3Q, D4Q, D5Q, D6Q, D7Q and PHI2Q. After selecting the 

desired signal(s), click the OK button to add these signals to the Waveform window. 

After adding the desired signals, your screen will look similar to Figure 2.48. 
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Figure 2.48 PSPICE waveform window with signals displayed 

Figure 2.48 only shows the data bus and clock signals for reference purposes. 

WDC has a ‘gold standard’ output file that all new simulations are compared to. All of 

the signals to be viewed can be obtained from this ‘gold standard’ output file. The 

waveforms of the new simulation are compared to the ‘gold standard’ simulation 

waveforms. If the waveform patterns match, the design is working properly. If the 

patterns do not match, the differences need to be analyzed further and modifications may 

need to be made to the layout, design rules or transistor parameters and the simulation 

must be run again. 

 At this point, if desired, add more digital and analog signals to get a feel for how 

the signals look in order to get more familiar with PSPICE. Close PSPICE when finished. 

After the PSPICE simulation has been successfully completed, the design is now 

ready to be sent to the foundry for fabrication. 
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2.5.2 Further comments on retargeting and simulating a design 

 

 Retargeting and preparing a design for simulation is a very involved process and 

will take some time to gain a complete understanding of the process. WDC has created a 

procedure document that goes into more detail on the retargeting steps and steps required 

for performing a PSPICE simulation. Some of these steps were described in brief in the 

previous sections. Students are encouraged to go through this procedure document and 

perform the steps outlined in order to gain a better understanding of the process.  

 The following list shows the steps that WDC uses for retargeting a design. Note 

that the list has three (3) DRC steps. One is for the core (W65C02C or other 

microprocessor/microcontroller), one is for the pad ring and the last is for the complete 

design (core connected to the pad ring). WDC has a pad ring that they have designed for 

all of the I/O, power and ground pads for their microprocessors/microcontrollers. The 

procedure is as follows: 

1. Select the target process 

2. Enter target rules into WDC Retargetable Design Rules Excel Spreadsheet for 

cores 

3. Convert layers from WDC layers to the targeted process layers 

4. Scale using scale factor from Excel spreadsheet for cores 

5. Bias using bias calculations from Excel spreadsheet 

6. DRC core using the targeted process core design rules 

7. Enter target rules into WDC Retargetable Design Rules Excel Spreadsheet for pad 

ring 
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8. Scale ring using scale factor from Excel spreadsheet for pad ring 

9. DRC pad ring using the targeted process design rules for I/O 

10. Wire the core to the ring 

11. DRC using the targeted process design rules 

12. Extract the SPICE netlist 

13. LVS using extracted netlist and chip netlist 

14. Perform PSPICE simulation 

15. Ship completed design to the foundry 

16. Receive chips back from foundry 

17. Test chips for functionality 

2.6 Fabricating the design 
 

 The last step in the design flow is sending the completed design out for 

fabrication. As was previously discussed, a particular foundry and manufacturing process 

is targeted for the design to be fabricated on. There are many factors associated with 

choosing a foundry and process. For example, it is desirable to have the design run at a 

foundry that has a good reputation and high yields for their processes.  

Cost is another factor in choosing a process. In general, the smaller the transistor 

geometry, the more expensive it will cost to fabricate due to high mask set costs. A mask 

set for a design that is run on a .5 process can cost around $50,000 - $100,000 dollars 

while a mask set for a .18 process can be as high as $1,000,000 or greater. 

It is also desirable to prove out the designs functionality before sending it out for 

full production fabrication. Many foundries offer what they call a Wafer Shuttle, where 

there are different designs from different companies on one wafer. This is called a Multi 
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Project Wafer (MPW). MPW’s are a low-cost option for obtaining a limited number of 

samples that can be evaluated for correct functionality. Typically, the number of chips 

received in a MPW run is 40. The cost for a MPW run is $6000 - $10,000 dollars, 

depending on the foundry. By having multiple projects on one wafer, the mask set costs 

are divided by the different companies, hence the low cost.  

If the samples received from a MPW run are functional, an order for full 

production wafers can be placed. Typically, a foundry requires that a minimum order of 

25 wafers be placed for a production run. If a MPW run was not done, it would be very 

painful and costly to learn that a device did not work coming out of a production run. 

2.6.1 The MOSIS Integrated Circuit fabrication service 

 

 MOSIS is a foundry service that started in 1981 and is based out of the University 

of Southern California. MOSIS offers both low-cost prototyping services and small 

volume dedicated runs. MOSIS is available to commercial businesses, government 

agencies and educational institutions.  

 MOSIS is a partner with many different foundries and they run different processes 

on a monthly basis. This gives businesses a low cost option to have their designs run on 

different foundries utilizing the MPW runs. For example, if a company wants to fabricate 

their design on the TSMC .35 process, they can go to MOSIS to get 40 pieces from a 

MPW run, verify that the design works properly on this process and then go directly to 

TSMC for production. The cost for a MPW run at MOSIS is $5500 for educational 

institutions and $6500 for commercial businesses. Along with fabrication services, 

MOSIS also offers device packaging services. WDC utilizes MOSIS to prove out a 

design before committing to production. 
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 Depending on the chosen process, fabrication time is roughly 8 to 10 weeks. 

When a design is submitted to MOSIS, a check of the project is performed to verify that 

the design meets the criteria of the chosen process. If there are errors detected, MOSIS 

support will contact the company to inform them of the problems. Once all problems are 

resolved, the design is put in the queue for fabrication.  

 Once fabrication is complete, packaged parts, if this service was requested, are 

returned to the company and the company can begin testing the parts. WDC uses MOSIS 

only for fabrication of the design. WDC uses a different vendor for packaging the parts. 

2.7 Testing the packaged parts 
 

 Once the packaged parts have been received, the parts need to be thoroughly 

tested before being released for sale to customers. There are two ways that WDC tests 

their packaged parts. One is in-house on a developer board or prototype board and the 

other is on an automated tester.  

2.7.1 In-house testing 

 

 WDC has a developer board for each of their microprocessors and 

microcontrollers. These boards interface to the PC and test programs can be downloaded 

into the on-board RAM and run to test the boards’ functionality. If the programs run 

correctly with the new parts installed, the new parts can be considered acceptable and 

released for sale. However, while an in-system test is good practice, it is always good to 

run the parts on an automated tester to exercise the parts with more vigorous test 

programs over different voltage and frequency ranges. 
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2.7.2 Testing on automated testers 

 

 After performing some in-house testing to see that the new parts are working 

correctly, WDC runs production tests on a Sentry automated tester at a testing facility in 

Phoenix. Test programs have been written for these testers to test all aspects of the parts. 

These tests range from writing to and reading from all registers, testing all op-codes and 

checking timing characteristics, for example. The parts are tested at operating voltages of 

1.8V to 6V and operating frequencies ranging from 1MHz to 14MHz. Parts are also 

tested at higher frequencies to determine the maximum frequency at which the parts will 

run. When the parts pass all of the tests on the automated testers, they are then considered 

functional and are made available as production samples to customers. 

 At this point, the parts have been tested in an in-house system and on the 

automated testers. As a final test, samples of the new devices are sent to customers to 

validate in their own systems to verify the parts’ functionality. There is always a 

possibility that the previous tests have missed something or perhaps the test programs 

need to be modified to reflect timing changes introduced by the new fabrication process. 

When customers report that the new devices are working in their systems, the devices are 

released for sale as fully tested production parts. 

 



 

 

3. System on a Chip Design Tutorial  
 

3.1 Introduction to the W65C122S System Chip 
 

The W65C122S is a fully static 8-bit System on a Chip microcomputer that is 

comprised of the W65C02S microprocessor, W65C22S Versatile Interface Adapter 

(VIA) for I/O, RAM and ROM.  

The W65C22S provides programmed control of up to two peripheral devices on 

Ports A and B. These bi-directional I/O ports provide direct interfacing between the 

microprocessor and peripheral units. There is 4KB of ROM and 256 bytes of RAM on the 

chip. There are also eight available pins that can be used to further customize the 

W65C122S. For example, a UART or an A to D and D to A converter can be added into 

the W65C122S. Table 3.1 shows the features of the W65C122S and Table 3.2 shows the 

system memory map. 

The projects and files used in the W65C122S tutorial are located on the WDC file 

server under F:\Tutor122. Make a copy of this directory and place it on the C:\ drive of 

the computer you are using so as not to change the source directory. 

Table 3.1 – Features of the W65C122S 

 

MPU Core W65C02S 

ROM 4096 bytes 

RAM 256 bytes 

I/O Core W65C22S 

Timer/Counters 2 

Synchronous Serial Port 1  

Low Power Modes WAI, STP 

Power supply 2.8V-5.5V 

Package type 68 PLCC 
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Table 3.2 System memory map 

 

Address Label Function 

FFFE-FFFF IRQ IRQB vector 

FFFC-FFFD RESET RESETB vector 

FFFA-FFFB NMI NMIB vector 

F000-FFF9 ROM On chip ROM 

0100-01EF RAM On chip RAM (Page 1) Stack 

00F0-00FF VIA On chip VIA 

0000-00EF RAM On chip RAM (Page 0) 

 

Memory Bus
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RAM
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Parallel Ports

Address Decoder

CPU

Control Bus
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Chip Selects

11

16

8
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Figure 3.1 Block diagram of the W65C122S 
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3.2 W65C122S pin descriptions 

3.2.1 Address Bus (A0-A15) 
 

The 16–bit Address Bus (A0-A15) is used to address memory and I/O. 

3.2.2 Bus Enable (BE) 
 

The Bus Enable (BE) input signal controls the address, data and the RWB (Read/Write 

Bar) buffers. When BE enable is high, the RWB, data and address buffers are active. 

When BE is low, these buffers are in the high impedance state and they may be driven by 

external circuitry such as Direct Memory Access (DMA) Circuitry. This is an 

asynchronous signal. 

3.2.3 Control Lines (CA1, CA2) 

 

The Control Lines (CA1, CA2) serve as the interrupt inputs or handshake outputs for Port 

A. Each line controls an internal interrupt flag with a corresponding interrupt enable bit. 

CA1 also controls the latching of Input Data on Port A. (See W65C22S Data Sheet) 

3.2.4 Control Lines (CB1, CB2) 

 

The Control Lines (CB1, CB2) serve as interrupt inputs or handshake outputs for Port B. 

These two control lines control an internal interrupt flag with a corresponding interrupt 

enable bit. These lines also can be configured as a serial data port under control of a Shift 

Register. (See W65C22S Data Sheet) 

3.2.5 Data Bus (D0-D7) 

 

The Data Bus (D0-D7) is used for data exchanges between microprocessors, memory and 

peripherals. 
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3.2.6 External Memory (EXTMEMB) 
 

The External Memory (EXTMEMB) input controls the memory map. When EXTMEMB 

is high, the on-chip RAM and ROM are accessed at the memory locations in Table 3.2. 

When EXTMEMB is low, the External memory is accessed at these addresses. 

3.2.7 FCLK 
 

This is the main clock source for the system and is driven from an oscillator. 

3.2.8 Interrupt Request (IRQB) 
 

The Interrupt Request (IRQB) signal requests that an interrupt sequence begin within the 

microprocessor. The IRQB is sampled at the falling edge of PHI2 operation. If the 

Interrupt disable flag (I) in the processor status register is zero, the current instruction is 

completed and the interrupt sequence begins during PHI2 low. The IRQB is a level 

sensitive interrupt and therefore must remain in the active low state when RDY is low 

and IRQB is recognized when RDY goes high and the current instruction is completed. 

The following sequence occurs: 

 The microprocessor stores the program counter and the status register to the stack.  

 The microprocessor sets the Interrupt disable flag high (I) so that no further 

interrupts are recognized 

 The Program Counter (PC) is loaded from location FFFE and FFFF. This is the 

start of the interrupt handler routine. (See W65C02S Data Sheet) 

3.2.9 No Connect (NC) 
 

The No Connect (NC) pins are not connected internally and may be connected externally 

as will occur in the W65C134DB Developer Board for testing. These pins may be used 

for new features such as UARTS, A to D and D to A. (See W65C134S Data Sheet) 
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3.2.10 Non-maskable Interrupt (NMIB) 

 

The Non-maskable Interrupt (NMIB) input is an edge sensitive interrupt that is sampled 

at the falling edge of PHI2. After the current instruction is completed, the interrupt 

sequence begins. The program counter is loaded with the vector from FFFA and FFFB 

(high byte). Since this is a non-maskable interrupt, another interrupt will occur while the 

microprocessor is servicing one. No interrupt can occur if NMIB is low and a negative 

going edge has not occurred since the last non-maskable interrupt. (See W65C02S Data 

Sheet) 

3.2.11 Peripheral Data Port A (PA0-PA7) 
 

The Peripheral Data Port A (PA0-PA7) is an 8-bit bi-directional bus used for data transfer 

of data, control, and status information between the W65C122S and a peripheral device. 

The input data maybe latched into register A of the VIA using the CA1 pin. (See 

W65C22S Data Sheet) 

3.2.12 Peripheral Data Port B (PB0-PB7)  
 

The Peripheral Data Port B (PB0-PB7) is an 8-bit bi-directional bus. The output signal on 

the PB7 may be controlled by Timer 1 while Timer 2 may be programmed to count 

pulses on PB6. (See the W65C22S Data Sheet) 

3.2.13 PHI2 
 

The PHI2 clock signal is generated from FCLK and provides the timing for the system. 

3.2.14 Power Supply (VDD, VSS) 
 

The Power Supply (VDD, VSS) are the positive (VDD) and ground (VSS) power pins. 

The W65C122S has two VDD pins, one for the core, Pin 36, and one for the pad ring, Pin 
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61. Likewise, there are two VSS pins, one for the core, Pin 53, and one for the pad ring, 

Pin 27. The core and buffer ring power dissipation can be measured independently. 

3.2.15 Read/Write (RWB) 
 

The Read/Write (RWB) signal indicates that the microprocessor is reading or writing 

from memory or I/O bus. When in the high state the microprocessor is “reading” from 

memory or I/O. In low state, the microprocessor is writing to the addressed memory 

location. (See W65C02S Data Sheet) 

3.2.16 Ready (RDY) 

 

When the Ready (RDY) signal is pulled low, the processor will stop in its current state and will 

remain in the state until the RDY line goes high. 

3.2.17 Reset (RESB) 
 

The Reset (RESB) signal resets the microprocessor stopping all operation and resets the 

VIA. (See W65C02S and W65C22S Data Sheets) RESB should be held low for at least 

two cycles after VDD reaches operation voltage from a power down. A positive transition 

of the signal returns the microprocessor to full operation. The interrupt flag is set, the 

decimal mode is cleared and the program counter is loaded with the vector from locations 

FFFC and FFFD (See W65C02S Data Sheet) 

3.2.18 Synchronize (SYNC) 
 

The Synchronize (SYNC) signal is high when the microprocessor is fetching an opcode. 

(See W65C02S Data Sheet) 
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3.3 Working with the W65C122S schematic using ViewDraw 
 

 In this section, we will be working with the W65C122S using ViewDraw. The 

complete W65C122S schematic has already been completed and verified. In Section 

2.1.3 you were introduced to some basic operations using ViewDraw. In this exercise, we 

will be opening an existing project that contains the complete W65C122S schematic, 

examining and explaining the different blocks that make up the schematic and extracting 

the Verilog netlist of the W65C122S that will be used for the Verilog simulation using 

Silos. 

3.3.1 Introduction to the W65C122S Schematic 
 

 Browse to C:\Tutor122 and double-click on the W65c122s_Tutorial.dproj file to 

open the project in ViewDraw. Your screen should look like Figure 3.2. 

 

Figure 3.2 W65C122S ViewDraw project window 
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 Open the Design Roots menu by clicking on the plus (+) sign to the left of it, as 

shown in Figure 3.2. This will display W65C122S with a green symbol next to it. Click 

on W65C122S to open the schematic. Once opened, your screen will look like Figure 3.3. 

 

Figure 3.3 W65C122S schematic in ViewDraw 

This is the complete schematic of the W65C122S. Notice that there are four (4) 

main blocks in the schematic. The blocks are: the W65C22C VIA core for I/O (top left), 

W256RAM which is a 256 byte RAM module (top-right), W65C02C microprocessor 

core (bottom left) and W4KROM which is a 4KB ROM module. 

The outer ring of the schematic is comprised of the I/O and power pads making 

up the pins of the device. Use the zoom window feature and zoom in on the block that is 

located under the W4KROM block. This is the Address Decoder block. You will also 
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notice some random logic gates around the schematic that are required for some signals. 

At the bottom right corner of the schematic, there are eight (8) unconnected pins. These 

pins are available for the addition of other blocks that can further enhance and customize 

the W65C122S. For example, a FLASH RAM block can be connected to these pins for 

more memory, or perhaps A to D and D to A converters can be added.  

The blocks for the W65C02C, W65C22C, W256RAM and W4KROM are just 

symbol representations and they each have a Verilog file associated with them to describe 

their functionality. For example, click on the W65C02C symbol on the schematic to 

highlight it. Next, right-click on the symbol to display a pop-out menu which shows the 

available options for working with the symbol. This is shown in Figure 3.4. 

 

Figure 3.4 Symbol pop-out menu 
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 First, select the Push Symbol option from the list to open the symbol for the 

W65C02C. Your screen will look like Figure 3.5. 

 

Figure 3.5 W65C02C ViewDraw symbol 

 All of the pins that are associated with the W65C02 core are placed on the symbol 

and labeled accordingly. As previously mentioned, there is a Verilog file that is 

associated with this symbol to describe its functionality. To view the properties of the 

symbol, right-click in the area to the left or to the right of the symbol to display another 

pop-out menu and select the Properties option. After doing so, your screen will look like 

Figure 3.6. 
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Figure 3.6 Symbol properties window 

The Block window defines the drawing size for the symbol and the type of 

symbol. Use the pull down arrows to see the available drawing sizes and Symbol types. 

For more information on the different symbol types, consult the online help feature. Next, 

click on the Attributes tab. Your screen will look like Figure 3.7. 

 

Figure 3.7 Symbol attribute window 
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 There are a number of different attributes that can be assigned to a symbol. For a 

complete list and description of the types of symbol attributes, consult the online help 

feature. In Figure 3.7, the attribute to note is the VFILE attribute. This is the attribute that 

shows the path to the Verilog file that defines the W65C02C. After viewing the attributes, 

click Cancel to return to the symbol view, then close out of the symbol view to return to 

the W65C122S schematic. 

 Now that we have viewed the symbol attributes and saw that a Verilog file is 

associated with the symbol, we want to take a look at the Verilog file, W65C02C.v. To 

do this, select the W65C02C symbol as previously described and right-click to display 

the pop-out menu. Now, select Push Language →Verilog. This will open a window and 

display the Verilog source code for the W65C02C. Due to the proprietary nature of the 

source code, it will not be included in this document. For the three (3) remaining blocks, 

you can view the Verilog source and symbol attributes, if desired, by following the 

procedure described above. 

 A symbol can either have a Verilog file associated with it to describe its 

functionality or it can have a schematic to describe its functionality. The four main blocks 

of the W65C122S schematic have a Verilog file associated with them; however the 

Address Decoder block has a schematic associated with it. To view the schematic behind 

the Address Decoder symbol, select the symbol to highlight it, right click on it to open 

the pop-out menu, and select Push Schematic. Your screen will look like Figure 3.8. 
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Figure 3.8 Schematic of the address decoder 

 Figure 3.8 shows the schematic that makes up the Address Decoder. The external 

signals A4 – A15 are the inputs and the signals W22S, RAMS, EXTMEM and ROMS are 

the outputs of the decoder. These external connections are the pins that are represented on 

the Address Decoder symbol which in turn are connected to the main W65C122S 

schematic. After examining the Address Decoder schematic, close out the window to 

return to the W65C122S schematic. 

 Lastly, around the edge of the schematic are the I/O pads for the signals that 

connect to the outside world. If you desire, you can view the properties of these pads by 

following the above procedures. 

3.3.2 Extracting a Verilog Netlist of the W65C122S 
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 After the schematic has been completed, it needs to be simulated in order to verify 

its functionality. In order to do this, a Verilog netlist must be extracted from the 

schematic, which in turn will be used as an input file to the Silos Verilog logic simulator. 

WDC has created a ‘gold standard’ test bench which will be used to test the 

extracted netlist. The results of the simulation will then be compared to the ‘gold 

standard’ results. If the results match, then we know that there are no errors in the 

schematic. If errors are found, they need to be analyzed to determine where the error in 

the schematic is located. 

ViewDraw has a utility called Verilnet which we will be using to extract the 

netlist. This utility is run from a DOS command prompt. Open a DOS window by 

clicking Start → Programs → Accessories → Command Prompt. Your screen will look 

similar to Figure 3.9.  

 

Figure 3.9 DOS window for using Verilnet 
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Change the directory to your working directory by typing cd..\..\tutor122. At the 

command prompt type the following line: verilnet w65c122s -i -m -w -upcall –iseoff 

and press Enter. This will run the Verilnet utility. There will be some brief activity as the 

utility reads in the program and executes. The process only takes a few seconds. When 

completed, your screen should look like Figure 3.10. 

 

Figure 3.10 Verilnet results window 

The output file generated is w65c122s.v and is placed in your working directory. 

Browse to your working directory and open the w65c122s.v file to view it. Figure 3.11 

shows a partial listing of the file.  
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Figure 3.11 Extracted Verilog netlist of the W65C122S schematic 

The netlist shows the module instantiation, the input and output signals, internal wire 

names, instantiations of the pads, cores and random logic gates. 

 We must also extract the Verilog netlist for the Address Decoder. Remember that 

the Address Decoder block has a schematic representation, not a Verilog representation. 

Thus, in order to simulate the complete schematic, a Verilog description of the Address 

Decoder must also be included. As before, at the command prompt type: 

verilnet addecode –i –m –w –upcall –iseoff and press Enter. The output file addecode.v 

will be placed in your working directory. After extraction completes, close the DOS 

window. 

 Now that we have successfully extracted a Verilog netlist of the W65C122S and 

Address Decoder schematics, there is nothing more that needs to be done in ViewDraw 

and you can close out this program. The netlists that we have extracted will now be used 

to simulate the design in Silos. 
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3.4 Simulating the W65C122S using Silos 
 

In Section 3.3.2, we extracted the Verilog netlist of the W65C122S schematic. We 

now must simulate this netlist and compare it to the ‘gold standard’ simulation results to 

verify its functionality. The logic simulation will be done using Silos and the test bench 

that was created by WDC. 

3.4.1 Working with the W65C122S Silos simulation directory 

 

 The Silos project for simulating the W65C122S is located at 

C:\Tutor122\Verilog\Chip\Viewdraw. Open Silos by double-clicking on the Silos icon on 

the desktop. Your screen will look like Figure 3.12. 

 

Figure 3.12 Silos main window 

 Next, open the existing project by clicking File → Open Project. Then browse to 

C:\Tutor122\Verilog\Chip\ViewDraw and double-click on W65C122S.spj. To begin, 

click on Edit → Project Properties to view the source and library files that are associated 

with the simulation. Your screen will look like Figure 3.13. 
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Figure 3.13 Silos project properties dialog box for the W65C122S simulation 

The source files needed for simulation are: 

W65c122s.v – netlist file extracted form ViewDraw schematic 

W4krom.v and v100.v – Verilog files describing the ROM data 

Addecode.v – netlist of the Address Decoder, extracted from ViewDraw 

Ram_a.v – Verilog file containing the RAM data 

Test_In.v – Test bench file for testing the internal memory 

Time_A.v – Verilog file containing the simulation time 

Next, click Library Files to view the library files needed for simulation. The required files 

are: 

W65c02c.enc – Encrypted Verilog file describing the core of the W65c02 

W65c22c.enc – Encrypted Verilog file describing the core of the W65c22 

W256Ram.v – Verilog file describing the RAM module 

Macro.enc – Encrypted Verilog file of the macros required for netlist simulation 

(description of the transistors that comprise the gates) 
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StdCell.v – Verilog file describing WDC’s standard cells 

StdModul.v – Verilog file describing WDC’s standard modules 

Click Cancel to close out of the Project Properties Window. 

 Also located in C:\Tutor122\Verilog\Chip\ViewDraw are files that are generated 

by Silos and reference files. The file Test_In.dat contains the results of the simulation. 

The file Test_In_Gold.dat is the ‘gold standard’ simulation result file that any new 

simulation is compared to. Test_In.dat is generated by Silos after every simulation. If the 

file already exists, it will overwrite and replace the original file. Also included in this 

directory are files called W65c122s_orig.v and Addecode_orig.v. These files are known, 

good netlists of the W65C122S and Address Decoder schematics and can be used for 

reference purposes. There is a Readme.txt file that contains some more information about 

the files in this directory. 

3.4.2 Setting up the simulation using the extracted schematic netlist 

 

 Prior to running the simulation, copy W65c122s.v and Addecode.v from 

C:\Tutor122 to C:\Tutor122\Verilog\Chip\ViewDraw. These are the schematic netlists 

extracted in Section 3.3.2. After copying these files, return to the Silos project window 

that was opened previously. Your screen will look like Figure 3.14. 
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Figure 3.14 Silos project window 

 To run the simulation, click on the green arrow icon, illustrated in Figure 3.14. 

Once the simulation starts, you will see some activity in the window. The files will be 

read in and checked for errors. If errors are found, the simulation will stop and the errors 

need to be investigated. Figure 3.15 shows the simulation when it is running. The 

simulation only takes a few moments to complete. 

 

Figure 3.15 Screenshot of simulation in progress 
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 After the simulation completes, your screen should look like Figure 3.16. 

 

Figure 3.16 Screenshot of completed simulation 

Next, we want to take a look at the waveforms generated by the simulation. To do this, 

click on the Analyzer icon, as shown in Figure 3.16. After doing so, your screen will look 

like Figure 3.17. 

 

Figure 3.17 Silos with data analyzer window 
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In the left hand side of the Analyzer window, click the plus (+) sign, as shown in Figure 

3.17 to expand the signal list. You may have to resize the Name field to see all of the 

signal names. Once expanded, you will see waveforms on the right hand side of the 

Analyzer window.  

Depending on the zoom factor, there may not be much of the waveforms to see 

initially. Click on the Zoom Full icon as shown in Figure 3.17 to bring the entire 

simulation into the viewing window. Click on the Zoom In icon (magnifying glass with 

the plus (+) sign), three times to magnify the signals for better visibility. Your screen will 

look similar to Figure 3.18. 

 

Figure 3.18 Simulation waveform view 

 Figure 3.18 shows the signals in the bottom half of the signal list. To view the 

signals in the top half of the signal list, move the scroll bar in the signal listing window 

up. We will not be analyzing the signals here, but the signals represented show the 

contents of the address and data bus as well as some signal pins with respect to the clock. 

After viewing the waveforms, close the project by clicking File → Close Project. 
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3.4.3 Comparing the simulation results to the ‘gold standard’ results 

 

 The final step is to compare the results of the simulation using the extracted 

netlists to the ‘gold standard’ simulation results. To do this, we will be using the File 

Compare utility within DOS.  

 After the simulation completed, the file Test_In.dat was generated by Silos and 

placed in C:\Tutor122\Verilog\Chip\ViewDraw. This has the results of the simulation in 

the format specified in the Test_In.v file. To view the Test_In.dat file, open it using 

WordPad. The file contains the names of the signals and their state at different intervals 

of time. Close the file after viewing it. 

 Next, open a DOS window by clicking Start → Programs → Accessories → 

Command Prompt. Your screen will look similar to Figure 3.19. 

 

Figure 3.19 DOS window  

 Change the current directory to C:\Tutor122\Verilog\Chip\ViewDraw. At the 

command prompt type: fc test_in.dat test_in_gold.dat and press Enter. This will execute 

the file compare utility. The comparison will only take a few seconds. When complete, 

your screen will look like Figure 3.20. 
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Figure 3.20 Results of file comparison 

 The results show that no differences are found between the two files, indicating 

that the extracted netlist of the W65C122S has no errors and that the design is now ready 

to be laid out using an IC layout editor. Close out the DOS window. 

3.5 Working with the W65C122S using ICED Layout Editor 
 

 After the design has passed the logic simulation phase, the next step in the design 

process is to layout the design as it is going to appear on final silicon. There are two 

methods of laying out a circuit: a) automatic and b) manual place and route. Automatic 

place and route tools are very costly but take less time to complete the layout. Manually 

placing and routing the design is more time consuming, but the tools are less expensive.  

There are advantages and disadvantages to both. For example, manually placing 

and routing the design gives more control to the designer as to where the cells are placed 

and wires are routed, thus resulting in an optimized core. Automatic tools rely on control 

files to place and route the cells, and though quicker, may not place cells and route 
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connections in the most optimal way. WDC uses the manual place and route method to 

layout a circuit and uses ICED as the layout editor. 

3.5.1 Viewing the W65C122S layout in ICED 

 

 The file containing the layout of the W65C122S is located in 

C:\Tutor122\GDSII\Example and it is called CHIP.SF. The SF stands for Stream File and 

is a compressed file that contains all of the cells that comprise the W65C122S. To open 

the file and view the layout, the .SF file must be unstreamed using ICED. 

 To unstream the CHIP.SF file, first open ICED by double-clicking the ICED icon 

on the desktop. Your screen will look like Figure 3.21. 

 

Figure 3.21 ICED DOS window 

 Next, change the directory to the working directory by typing 

cd..\tutor122\gdsii\example. Your screen will look like Figure 3.22. 
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Figure 3.22 ICED window with working directory 

At the command prompt, type: unstream chip. Your screen will look like Figure 3.23. 

 

Figure 3.23 ICED unstream window 

 The unstream process takes two passes to complete. Figure 3.23 shows the start of 

Pass 1. There are three prompts during Pass 1. At each prompt, hit the Enter key as no 

information is needed for Pass 1. After hitting Enter at the third prompt, you will see 
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some activity in the window as the individual cells are removed from the .SF file. Once 

the activity stops, your screen will look like Figure 3.24. 

 

Figure 3.24 DOS window at the completion of pass 1 

Next, once again type: unstream chip at the command prompt and press Enter. 

This will start Pass 2 of the unstream process. There are nine prompts to Pass 2. Two of 

which need information to be provided. The first five prompts are shown below. Only 

prompts 3 and 5 require the indicated input shown in BOLD. Hit Enter at all other 

prompts. Text under the prompt is information returned by ICED. 

Enter ICED user unit size in microns [1.0]: 

Enter divisions per unit [1000]: 

Are you using UNSTREAM to scale this design or snap it to grid (Y or [N])? N 

   1 ICED division = 1 Stream data base unit 

Enter maximum allowable coordinate rounding error in microns [0.0]: 

   Tolerance = 0.0 microns = 0.0 ICED divisions 

Font[0] is "GDSII:CALMAFONT.TX" -- Enter character height in microns [1]: 4 



 87 

After the last prompt, there will again be some activity on the screen. Once Pass 2 is 

completed, your screen will look like Figure 3.25. 

 

Figure 3.25 DOS window at the completion of pass 2 

Now that the unstream process is complete, we can open up the layout and view 

it. To open the layout, type: icwind chip at the command prompt. There will be some 

activity as ICED reads in the file. When the file opens, it may be zoomed in to a 

particular area of the design. On the right hand side of the screen is the ICED menu. 

Under the View menu click All to view the complete design. Your screen will look like 

Figure 3.26. 
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Figure 3.26 Complete layout of the W65C122S 

 Notice that the layout follows the same orientation as the ViewDraw schematic. 

The block in the top left corner is the W65C02 core, the W65C22 core is in the top right, 

the W4KROM is at the bottom left and the W256RAM is at the bottom right. The 

Address Decoder is located at the top left side of the W4KROM.  

 You can use the View menu to zoom in on different areas of the chip to view the 

layout in more detail. Alternately, you can close out the current view and open the cells 

individually to view them. For example, close out of the chip view by clicking File → 

Leave. At the command prompt, type: icwind addecode to view the Address Decoder by 

itself. Again, you may have to click View → All to see the entire layout. Your screen will 

look like Figure 3.27. 
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Figure 3.27 Layout of the address decoder 

 A list of all the cells that make up the W65C122S can be found in 

C:\Tutor122\GDSII\Example. All files with a .CEL extension are the cell files and can be 

viewed by typing icwind cellname at the command prompt, as we did for the Address 

Decoder and Chip. 

 As previously mentioned, the layout for the W65C122S was manually placed and 

routed. The cores and standard cells were all laid out previously and are located in a 

library. When a new design needs to be laid out, the library is placed in the ICED search 

path and the cells can be added to the design. This is similar to the way a schematic 

symbol is added to a drawing in ViewDraw. 

 After the design has been laid out, a DRC needs to be done on the design to 

ensure that all design rules have been followed. 
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3.5.2 Performing a DRC on the W65C122S Core Layout 

 

 There are two DRCs done on the W65C122S layout. One DRC is done on the 

Core and the other DRC is done on the Ring. The Ring is comprised of the output pads 

around the chip and the Core is comprised of the W65C02, W65C22 etc… For this 

discussion, we will only be performing the DRC on the Core. 

 WDC has created a rules file that describes the layout rules for a 2 process. All 

of WDC’s designs are laid out using these 2 design rules. The DRC that we will 

perform will check for errors against the rules file WDC200.RUL.  

 First, the rules file WDC200.RUL must be compiled by ICED. To compile the 

WDC200.RUL file, at the command prompt type: d3rul-nt WDC200. After some brief 

activity, your screen will look like Figure 3.28. 

 

Figure 3.28 DOS window after compiling the rules file 

 Next, open the chip file by typing: icwind chip at the command prompt, and view 

the entire chip by clicking View → All. Then type DRC from the keyboard. Notice that 

DRC is shown at the command line at the lower left hand corner of the screen, as shown 

in Figure 3.29. 
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Figure 3.29 Starting DRC in the chip view 

Next, press Enter. You will get a message at the bottom left of the screen stating: 

! Output written to file C:\TUTOR122\GDSII\EXAMPLE\CHIP.POK. The .POK file is 

generated and used by ICED during the DRC process. Now click File → Leave to close 

out the chip view. 

 We are now ready to perform the DRC on the design. At the command prompt 

type: drc3-nt wdc200 chip output quickpass. WDC200 is the rules file, chip is the 

name of the chip, output is the name of the command file that will be generated by the 

DRC and quickpass is an option for the DRC program that is sufficient to accomplish the 

task. Next press Enter to run the DRC. There will be some activity in the DOS window as 

the DRC runs, and it will take a few minutes for the process to complete. When the DRC 

finishes, your screen will look similar to Figure 3.30. 
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Figure 3.30 DOS window at completion of DRC 

 The information at the end of the DRC shows the results of the DRC. It will show 

the error count, non-error count and any warnings generated. In our case, there are 31,730 

non-errors and 210 errors in the layout with no warnings. It is important to note that not 

all errors reported are real errors in the design. ‘False’ errors are generated by the DRC 

due to text and other information describing the design that does not follow any rules. All 

errors need to be evaluated to determine if they are real or false errors. 

 There are two files that are generated by the DRC. The first is OUTPUT.CMD 

which is a command file that contains the error data found by the DRC and the second is 

OUTPUT.DLO which contains information about the DRC run and can be viewed in 

WordPad.  

 Next we want to view the output file to see the errors that were reported by the 

DRC. At the command prompt, type: icwind output and press Enter. This will open a 

new cell called output, and your screen will look similar to Figure 3.31. 
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Figure 3.31 New output cell ICED window 

 Now type: @output and press Enter. This will execute the OUTPUT.CMD 

command file and open the output cell showing the errors. You may have to click View 

→ All to bring the entire chip into view. After doing so, your screen will look like Figure 

3.32. 

 

Figure 3.32 Output cell showing DRC errors 
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Figure 3.32 shows the errors detected by the DRC. However, as mentioned 

previously, this DRC is only for the Core of the chip. As you can see, many of the errors 

are due to the fact that the Ring is present, thus these can be ignored. In the center of the 

chip there are some random errors. These need to be checked to see if they are real or 

false errors. 

Zoom in on the area indicated in Figure 3.32 by clicking View → Box. This will 

display the mouse pointer as an X. Move the pointer to the top left of the area shown in 

Figure 3.32 and click the left mouse button once. Then move the pointer to the lower 

right of the area until the box is around the entire area. Then, click the left mouse button 

once and release. This will zoom in on the selected area and your screen will look like 

Figure 3.33. 

 

Figure 3.33 Close up of DRC errors 

 Notice that the area reflects text and other labels that describe the chip. Again, 

these are false errors and can be ignored. Follow the same procedure for the rest of the 

errors in the center of the chip. You will notice that all of these are text and markings that 
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are not real errors and can be ignored. After reviewing all of the errors, close the window 

by clicking File → Leave. 

 Now that we have performed a DRC on the layout and analyzed all of the errors, 

the next step is to perform an NLE and LVS on the design. 

3.5.3 Running NLE on the design 

 

 After the DRC has been performed and everything passes, the next step is to 

extract the netlist of the layout. The first thing that must be done is to compile the NLE 

rules files. This rules file is called CHIP.RUL and is located in the working directory. 

This rules file was created by WDC and has layer information that is read in and used by 

the NLE tool. 

 To compile the rules file, at the command prompt, type: nleru-nt chip and press 

Enter. After some brief activity, your screen will look like Figure 3.34. 

 

Figure 3.34 Completion of NLE rules file compilation 

 Next, we are ready to run the NLE program. This step will take a few minutes to 

complete and it is done in four passes. This is because ICED breaks up the design into 
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four panels and extracts the data. To run the NLE, at the command prompt, type:         

nle-nt chip chip chip. In this case, nle-nt calls the NLE program; the first instance of 

chip is the rules file (chip.rul); the second instance of chip is the cell file (chip.cel) and 

the third instance of chip is the .POK file (chip.pok) that was generated by the DRC. 

 As previously mentioned, this step will take a few minutes to complete. Figure 

3.35 shows the beginning stage of the extraction; Figure 3.36 shows the extraction after 

the second pass and Figure 3.37 shows the results after the extraction completes.  After 

entering the above command line, there is no user input required for the duration of the 

netlist extraction. 

 

Figure 3.35 Initial stage of netlist extraction 
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Figure 3.36 Middle stage of netlist extraction 

 

Figure 3.37 Completion of netlist extraction 

After the extraction completes, ICED generates a file called CHIP.P9K. This file 

contains the results of the extraction and is used during the LVS step. 
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3.5.4 Running LVS on the design 

 

 After successfully extracting the netlist of the layout, the next step is to LVS the 

design, comparing the layout netlist to the schematic netlist. In order for this step to take 

place, there are some intermediate steps that need to be done that are beyond the scope of 

this document to perform. However, these steps will be described here to complete the 

understanding of the process. The LVS step will be performed using files that have 

already been created and proven by WDC. 

 The schematic netlist that was extracted in Section 3.3.2 is in Verilog, which is 

not an acceptable input for LVS. Thus, this netlist must be converted to a file format that 

can be read in by ICED. The format used is a Circuit Description Language (CDL) and 

WDC uses a utility called VERTOCDL.EXE to perform the conversion. Once the 

conversion to CDL is complete, this file needs to be hand modified in preparation for 

LVS. This hand modification is necessary as some module names need to be renamed 

and duplicate signal instantiations may need to be removed. The modification of the 

converted netlist can take a considerable amount of time to complete and then debug if 

necessary. 

 The working directory contains a file called CHIP.LVS, which is the CDL netlist 

of a hand-coded structural Verilog file describing the W65C122S. This is the file that we 

will be using for LVS. The following files are also required for LVS and these files are 

located in the working directory: CONTROL.LVS, SCHMODEL.NET, LVS_LAY.NET 

LAYMODEL.NET and LVS_SCH.NET. The CONTROL.LVS file describes the options 

and criteria used for the comparison. SCHMODEL.NET specifies the schematic models 

for the format of the schematic netlist. LVS_LAY.NET includes the layout netlist and 
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layout models used for LVS. LAYMODEL.NET specifies transistor models and parasitic 

capacitance models. LVS_SCH.NET includes the schematic netlist, schematic models 

and library files that are used in LVS. All of these files can be viewed using WordPad. 

 To run LVS, type: lvs-nt control.lvs lvs_sch.net lvs_lay.net at the command 

prompt and press Enter. There will be some activity on the screen as LVS runs. LVS only 

takes a few seconds to complete. 

 

Figure 3.38 Results of LVS 

 Figure 3.38 shows the results of the LVS. Notice that LVS checks for matched 

devices and matched nets. It is important that all devices and all nets match, as Figure 

3.38 shows. This indicates that the schematic or hand-coded netlist matches the layout 

netlist, resulting in a successful LVS. If LVS indicates that there are unmatched devices 

and nets, the output files need to be analyzed to determine where the errors are and then 

they need to be corrected. 
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 Once LVS completes, a Results directory is created in the working directory and 

all LVS output files are stored here. The LVS output files are: COLLAPSE.LVS which 

lists all devices that were collapsed into one device, EQUIV.LVS shows the equivalent 

names of nets between schematic and layout, FILTER.LVS shows filtered nets and 

devices, LABELS.LVS shows the layout net labels, MATCH.LVS shows the matched 

nets and devices, NETDEG.LVS shows net information after preprocessing, 

NETONE.LVS shows any floating nets, PARAM.LVS shows any parameter errors, 

RESULTS.LVS contains the final results of the comparison, SMETRIC.LVS shows 

devices that were forced matches, SPICE.LVS is the SPICE netlist and UNMATCH.LVS 

contains any unmatched devices and nets. All of these files can be viewed using 

WordPad. 

 As previously mentioned, all devices and nets must match before the design 

process can continue. After LVS, the next step in the process is PSPICE analysis to verify 

the functionality of the chip. SPICE.LVS is the file that will be used by PSPICE for 

verification. If there are errors in the LVS, then the SPICE netlist will contain errors, thus 

PSPICE analysis cannot be performed. 

3.6 Retargeting the W65C122S to a different foundry process 
 

 Sections 3.3 to 3.5 discussed working with the W65C122S as it was designed 

using WDC’s 2 design rules. However, there are no longer foundries that support 

designs using this geometry, so the design must be retargeted to a technology supported 

by a foundry process. For example, .5 processes remain popular and are cost effective, 

thus they are still supported by many foundries. This section will discuss the procedures 

for retargeting the W65C122S to a TSMC .5 process. 



 101 

3.6.1 Sizing the WDC 2 design rules to target design rules 

 

 After the design has been drawn using the WDC 2 design rules and passed the 

DRC and LVS steps, the design can be retargeted to any desired foundry process. First, 

the foundry and technology must be selected and in this example, the foundry is TSMC 

and the process is .5. The next step is to acquire the foundries proprietary design rules 

for the selected process. Typically, a Non-Disclosure Agreement (NDA) must be signed 

between the foundry and company looking to use the design rules.  

 Once the design rules are acquired, the 2 design rules must be sized to the .5 

design rules. As previously discussed in Section 2.4, WDC uses an Excel spreadsheet to 

size the 2 rules to the targeted rules. The 2 rules are entered into one column and the 

corresponding targeted .5 rules are entered into another column. Due to the proprietary 

nature of these design rules, the spreadsheet will not be shown here. The spreadsheet is 

then executed and the new layer widths and spaces are displayed and a design rule check 

is performed. Any errors resulting from the DRC have to be analyzed as some may not be 

critical. Critical errors need to be corrected by further sizing. 

 Now that the new target layers have been determined, this information needs to be 

entered into a file called BIAS.RUL which will be used for the DRC step on the 

retargeted design. 

3.6.2 Scaling the W65C122S using ICED 

 

 The next step in the retargeting process is scaling the original design using ICED 

so that it is redrawn to the target design rules. Scaling is done during the Unstream 

process where information entered into ICED creates a scaling factor for the .5 rules.  
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 To scale the W65C122S we will be utilizing the CHIP.SF file in the 

C:\Tutor122\GDSII\Retrgtex directory. Open up ICED and change the default directory 

to C:\Tutor122\GDSII\Retrgtex. At the command prompt, type: unstream chip and press 

Enter to start the first pass of the Unstream process. Your screen will look like Figure 

3.39. 

 

Figure 3.39 First pass of unstream process 

 Press Enter for all of the prompts for Pass 1 as there is no input required during 

Pass 1. After Pass 1 completes, your screen will look like Figure 3.40. 

 

Figure 3.40 Completion of unstream pass 1 
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 Next, once again type: unstream chip at the command prompt and press Enter to 

begin Pass 2. It is during Pass 2 that the scaling information is entered. Your screen will 

look like Figure 3.41 at the start of Pass 2. 

 

Figure 3.41 Second pass of unstream process 

The following shows the Pass 2 prompts and the required user response will be in 

BOLD. Press Enter after each entry. Where no input is required, press Enter, shown as 

(Enter). ICED will display some information lines after certain entries. 

Enter ICED user unit size in microns [1.0]: 1 

Enter divisions per unit [1000]: (Enter) 

Are you using UNSTREAM to scale this design or snap it to grid (Y or [N])? Y 

Enter the original feature size [1.0]: 2 

Enter the final feature size [1.0]: 0.5 

Enter snap grid step size in microns [0.001]: (Enter) 

Enter maximum allowable coordinate rounding error in microns [0.0]: 0.01 

Font[0] is "GDSII:CALMAFONT.TX" -- Enter character height in microns [1]: 4 
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Press Enter for all remaining prompts as no other input is required. After pressing Enter 

at the final prompt, there will be some activity on the screen while Unstream completes. 

When completed, your screen will look like Figure 3.42. 

 

Figure 3.42 Completion of unstream pass 2 

 After the completion of Pass 2 of Unstream, the scaling process is complete. The 

design has now been retargeted to the TSMC .5 design rules. Next, view the chip with 

the TSMC layers by typing: TSMC50 chip at the command prompt. TSMC50 is the 

startup file that calls the file containing the TSMC .5 layers. After the file opens, click 

View → All to see the entire chip. Your screen will look like Figure 3.43. 
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Figure 3.43 Chip view with TSMC layers 

After viewing the chip, close out of ICED by clicking File → Leave. 

3.6.3 Post retargeting steps 

 

 Now that the design has been retargeted to the new design rules, DRC must be run 

on the design to check if there are any design rule violations. The process for DRC is 

generally the same as was discussed in Section 3.5.2, and will not be performed here. 

 However, a different rules file is used and the DRC is done on the entire chip, not 

separately for the core and pad ring. The rules file used is the one created after sizing to 

the new design rules using the Excel spreadsheet.  

 After DRC has passed on the retargeted design, the layout netlist must be 

extracted and then LVS must be performed. Again, the process for NLE and LVS are 

generally the same as discussed in Sections 3.5.3 and 3.5.4 respectively. All of the 

required files to complete the DRC, NLE and LVS steps for the TSMC .5 design rules 

have been created and tested by WDC. 
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 Finally, after LVS has been successfully completed, the design is ready for 

functional verification using PSPICE. Electrical characterizations and timing analysis are 

also done using PSPICE. 

3.7 Using PSPICE to verify device functionality 
 

 After a successful LVS, we now have a SPICE netlist that can be used for 

PSPICE analysis. The SPICE netlist as generated by ICED needs to be modified to be 

accepted by PSPICE, as it contains characters that are recognized as comments in 

PSPICE and contains only node numbers. Thus, the netlist needs to be modified to 

remove the comment lines and add node names to make debugging easier. 

 Similar to the process of modifying the extracted Verilog netlist for NLE and 

LVS, the preparation and debugging of the PSPICE netlist can be very time consuming 

and is beyond the scope of this document to perform. Furthermore, setting up the PSPICE 

simulation files and running the simulation is also beyond the scope of this document. 

However, this section will discuss the steps required to convert the SPICE netlist and 

prepare it for simulation, preparation of simulation files and setting up the PSPICE 

simulation. 

3.7.1 Converting the extracted SPICE netlist to PSPICE format 

 

 To prepare the “NETLIST.NET” file required by PSPICE, two programs were 

written to perform the conversion. One program is written in C and the other in PERL. 

This step must be done on the system at WDC that has a C complier and the PERL 

program. Both programs will accomplish the same task and the user can decide what 

program to use. For simplification, this discussion will use the PERL program as the 

example. 
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 Two text files with the names file1.txt and file2.txt are created in a separate 

directory which does not need to be in the working directory. The contents of the 

LABELS.LVS file are copied into file2.txt and the text *.NETLABEL is globally 

removed from the file. Next, the contents of the SPICE.LVS file are placed in file1.txt 

and the NLE comments are removed. Lastly, the PERL script is executed and creates a 

file called file3.txt. This file now contains the netlist of transistors and capacitors with 

node names instead of node numbers. This file can now be used as an input to PSPICE 

and is renamed NETLIST.NET. 

3.7.2 Setting up the PSPICE simulation 

 

 The PSPICE project contains several files required for simulation. The PSPICE 

project file has a .CIR extension to it. A working directory is set up to store the 

simulation files and project file. These simulation files are: NETLIST.NET which is the 

converted SPICE netlist that was generated by LVS, MODEL.INC which contains the 

model parameters for the transistors and capacitors used in the design. These parameters 

are from a particular foundry process. PROBE.INC contains the digital and analog nodes 

that we want to view after simulation. STIMULUS.STM contains the inputs to the 

microprocessor and other inputs and this file is generated from the Verilog simulation. 

DIGITAL.INC contains the test setup including voltage levels, memory, A/D and D/A 

converters and any other required circuitry. RAM.IHX contains the RAM data in Intel 

Hex format. 

 Once all of the files have been prepared and placed into the working directory for 

the PSPICE simulation, the .CIR file is opened which automatically opens PSPICE. The 
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simulation is started from within the PSPICE environment and can take a few hours to 

complete. 

 After the simulation has completed, all of the data is stored in a .DAT file. To 

view the results of the simulation, the waveform window is opened and signals are added 

to the waveform window. Generally, two waveform windows are opened. One window is 

used to view the desired digital signals and the other to view the desired analog signals. 

The digital signals represent those signals that transition from a high-to-low or low-to-

high state with respect to the clock. The analog signals represent those signals that have a 

transient response, and do not change with respect to a clock edge. Figure 3.44 shows 

both digital and analog signal windows. 

           Time

3.1000us 3.1500us 3.2000us 3.2500us 3.3000us 3.3500us3.0644us 3.3985us

V(SBL6) V(RWB) V(ATSB)

1.00V

2.00V

3.00V

-0.16V

SEL>>

      D0Q

      D1Q

      D2Q

      D3Q

      D4Q

      D5Q

      D6Q

      D7Q

    PHI2Q

 

Figure 3.44 PSPICE waveform window with digital and analog signals 

Note that waveform windows can be opened at anytime during the simulation and results 

can be viewed as they are output to the screen. The resulting waveforms need to be 

analyzed to verify that the design is working as expected. 
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 PSPICE analysis is the final step in the design verification process. This step is 

critical and time needs to be spent analyzing the simulation results. If something is not 

performing correctly, it is possible that transistor sizes need to be modified in the netlist 

and the design re-simulated. If a change to transistor sizes has been made to the 

simulation netlist, and the problem has been fixed, the layout must also be modified to 

reflect the changes. This means that the DRC, NLE and LVS steps must be performed 

again to verify that the layout changes have not violated any design rules and that it still 

matches the schematic. Then, a new simulation netlist must be created and this netlist 

must be simulated in PSPICE. The process continues in this way until the design is 

determined to be working correctly.  

 As previously mentioned, PSPICE analysis is a critical step in the design flow. 

The step after functional verification is sending the design out to the foundry to be 

manufactured. If the design was not thoroughly tested for proper functionality, the chips 

received from the foundry will not function properly. This will result in time and money 

being wasted, as the design will need to be re-evaluated; DRC, NLE and LVS performed; 

functional verification performed and re-sent to the foundry for manufacturing. This will 

also delay the sale of the chip and market share may be lost. 

3.8 Sending the final design to be manufactured 
 

 Once the design has gone through functional verification, it is ready to be sent to 

the foundry to be manufactured. Section 2.6 discussed some options available for 

manufacturing. One option is manufacturing a limited amount of chips on a multi-project 

wafer. An MPW run yields approximately forty chips at a fraction of the cost for a full 

run at the foundry.  
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This option is beneficial for new designs, especially if the design turns out to be 

faulty. Spending $6,000.00 for forty chips to find out that the design is faulty is more 

acceptable than spending $25,000.00 for thousands of faulty chips. A MPW run would be 

the preferred option for WDC if they were to manufacture the W65C122S, as the design 

was never sent out to be fabricated. 

The other option is sending the design out for a production run at the foundry. 

This option is usually chosen for designs that have been proven, and just retargeted to a 

different process. The following section will describe this option as used by WDC for 

proven designs. 

3.8.1 Sending the design to the foundry for full production run 

 

 The current foundry used by WDC is TSMC. WDC interfaces with TSMC 

through a company called Progate, also located in Taiwan. Progate handles all of the 

contractual paperwork, performs all of the final design checks, sends the final design files 

to TSMC and returns the completed wafers to WDC. 

 Using the W65C122S as an example and assuming that the design has been 

proven on a MPW run, the following describes the process for obtaining a full production 

run of wafers for the device.  

 The TSMC .5 process is chosen and all DRC and LVS steps have been 

successfully completed. The output file is then streamed (compressed) into a .SF file. All 

contracts are signed, the .SF file is sent to Progate and funds are transferred to pay for the 

production. Progate performs the final design checks to ensure there are no conflicts with 

the targeted process. After Progate completes their process, called tape out, they send the 

design to TSMC to be manufactured. 
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 Initially, a pilot run of six wafers are manufactured. This pilot run costs 

approximately $25,000.00. A pilot run is done first so that the design can be tested on 

silicon before committing to a full production run of twenty-five wafers. Once the pilot 

run is completed and wafers released to WDC, WDC has the die on three wafers 

packaged and returned to them. These packaged parts are then tested in house and on 

automated testers as discussed in Sections 2.7.1 and 2.7.2. 

 There is a good possibility that even though all design rules have been followed, 

the design may not work properly on silicon due to the manufacturing process. If testing 

determines that the design is not working properly, the problem areas need to be 

analyzed, corrections need to be made to the layout, and the design process repeats itself 

from the DRC step. WDC has the option at this point to have another pilot run 

manufactured, or go to full production if they feel confident in the design changes. 

 If testing determines that the design is working properly, the remaining three 

wafers are released to WDC, packaged and tested. At this point, the part is available for 

sale. The amount of parts received depends on the size of the W65C122S die and the size 

of the wafer. The W65C122S on a six inch wafer would yield approximately 2000 – 2500 

good die. Therefore, an entire pilot run can yield approximately 12,000 parts.  

 WDC can then opt to have a full production run of wafers manufactured 

depending on chip sales. The cost for a production run of twenty-five wafers is 

approximately $25,000.00. Notice that a production run costs the same as a pilot run. 

This is because there are Non-Recurring Engineering (NRE) costs and mask costs 

involved in the initial phase of manufacturing. Once the design is proven, these NRE and 

mask costs are no longer incurred. 
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3.9 Real world application example 
 

 This document introduced the student to the concepts of VLSI design, provided 

an introduction to design tools used in industry and provided hands-on examples using 

WDC’s 65xx technology, introducing the concept of design reuse. This section will relate 

the concepts discussed in this document to a real world example, providing a better 

understanding to the value of design reuse. 

3.9.1 Licensing and using 65xx IP 

 

 The main focus of WDC’s business model is licensing reusable IP. All of the 

cores used in the W65C122S (W65C02, W65C22, W4KROM, 256RAM) are available 

for companies to license and use in their own custom SOCs. WDC also has IP cores for 

the W65C816 16-bit microprocessor, W65C134 8-bit microcontroller and W65C265 16-

bit microcontroller. All of these cores have been proven to be reliable over the years and 

are used today in various products such as automotive, consumer and medical to name a 

few. 

 Typically, a company will license a microprocessor core from WDC and add 

other core components around it to develop their own custom chip. These added 

components can be FLASH, I/O interfaces, A to D and D to A and network interfaces as 

examples. 

 For example, let’s say that a company wants an 8-bit microprocessor and I/O 

capabilities, but needs more RAM than the 256 bytes of RAM available on the 

W65C122S. The company can license the W65C02 and W65C22 from WDC for the 

microprocessor and I/O. Then, they can either develop their own RAM cell or license a 

RAM cell from another company to fit their design needs. By licensing and using 
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existing IP, the design can be realized faster and the product can be on the market in a 

shorter amount of time than if the company was designing everything by themselves. 

 In summary, using reusable IP for a design will cut down on design costs, shorten 

the design time, enable the product to be on the market in a timely manner and provide 

the user with confidence in the design that results from using proven technology. 

 



 

 

4. Conclusions and Recommendations 
 

4.1 Conclusions 
 

The original focus of this project was to develop a laboratory manual for UET 513 

– Introduction to VLSI Design. The focus was then shifted to a hands-on tutorial in VLSI 

design utilizing the concept of design reuse when UET 513 was no longer offered. It was 

realized that a tutorial was needed to provide the student with valuable hands-on 

experience using the tools involved in developing a SOC. The main concept present 

throughout this tutorial development was that this is only an introduction to the concepts 

and tools of VLSI design. 

 The assumption that the student has little or no familiarity with VLSI design was 

addressed in Chapter 2. Here, background and history of VLSI were presented to give the 

students an appreciation of how the design methodology has developed over the years. 

Also presented in Chapter 2 is information on each part of the design flow, from design 

entry to fabrication. Each step, where applicable, includes an introduction to the tool used 

in the step, accompanied with a hands-on example. This material gives the student the 

necessary background information that will help them understand the design process as 

they are working with the W65C122S SOC presented in Chapter 3. 

 Chapter 3 introduces the student to the W65C122S SOC, reusable technology and 

more detailed information about the design steps. Here, the student uses the tools 

introduced to them in Chapter 2 and works with the W65C122S instead of a simple 

example. Since the W65C122S has already been designed, the student performs various 

procedures of the W65C122S design flow and compares their results to known good 
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results. Chapter 3 also relates the design concepts to a real world example and business 

models used by The Western Design Center, Inc. 

 Following this tutorial will provide the student with a complete picture of the 

VLSI design flow; give them experience using design tools that are used in industry; 

introduce them to WDC’s 65xx technology and provide an understanding to the value of 

using reusable technology. 

4.2 Recommendations 
 

 As previously stated, this tutorial only provides an introduction to VLSI design. If 

the student has a desire to learn more about VLSI design, it is recommended that the 

student refer to sources presented in this tutorial. These sources provide great detail for 

all the aspects of the VLSI design flow. 

 It is also recommended that the student consult with the staff at The Western 

Design Center, Inc. Not only can they provide information regarding VLSI design, but 

they can also assist the student in understanding the concept of design reuse as it applies 

to this tutorial and WDC’s technology. 

 An internship with a company doing VLSI, SOC design will also be a valuable 

experience for the student, enabling them to expand their understanding of VLSI design. 

 Lastly, it is recommended that the student use this tutorial as a reference and 

continue where it leaves off. For example, there are eight project pins available on the 

W65C122S. If a student wants to further their knowledge of VLSI, they can develop a 

circuit that will be placed onto the system chip using the eight available pins. This will 

enhance what they have learned following the tutorial, and solidify the concept of design 

reuse. 
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APPENDIX 
 

A1. Contact information for The Western Design Center, Inc. 

 

The Western Design Center, Inc. 

2166 E. Brown Rd. 

Mesa, AZ 85213 

Ph: 480-962-4545 

Fax: 480-835-6442 

Contact: William D. Mensch Jr. 

E-mail: mensch@westerndesigncenter.com 

www.westerndesigncenter.com 

 

A2. Information regarding internships at The Western Design Center, Inc. 

 

 WDC offers both paid and unpaid internships. The type of internship is 

determined between the student and WDC. Prior to a student interning at WDC, a project 

must be defined that is deemed beneficial for both WDC and the student. A Non-

Disclosure Agreement must be signed by the student and WDC before any internship can 

begin. The NDA is required to protect WDC’s technology and IP. 

 Once a project has been defined and the NDA signed, the student and WDC agree 

on how many hours and what days the student can come to the WDC office to work on 

the project. An Internship Agreement defining the scope of the internship is signed by 

WDC and the student. The student is expected to be self sufficient while working on their 

project, however, the staff at WDC will be available to assist the student when required. 

 At the end of the internship, the Internship Agreement is terminated and all work 

done remains the property of WDC. The student is always bound by the NDA. An 

internship may or may not lead to a full time position at WDC. This must be discussed 

between the WDC and the student. 

http://www.westerndesigncenter.com/

